REFERENCES

1. Bray, F.; Laversanne, M.; Sung, H.; et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer. J. Clin. 2024, 74, 229-63.

2. Roerden, M.; Spranger, S. Cancer immune evasion, immunoediting and intratumour heterogeneity. Nat. Rev. Immunol. 2025, 25, 353-69.

3. Fyfe, I. CNS drug delivery improves chemotherapy. Nat. Rev. Neurol. 2025, 21, 125.

4. Wang, J.; Liao, Z. Research progress of microrobots in tumor drug delivery. Food. Med. Homol. 2024, 1, 9420025.

5. May, M. Targeted radiation adds precision to cancer therapy. Nat. Med. 2025, 31, 702-3.

6. Zhang, Y.; You, P.; Liu, R.; et al. Artificial intelligence in clinical trials of lung cancer: Current and future prospects. Intell. Oncol. 2025, 1, 34-51.

7. Crosby, D.; Bhatia, S.; Brindle, K. M.; et al. Early detection of cancer. Science 2022, 375, eaay9040.

8. Zhen, Z.; Yang, Y.; Feng, C.; Lin, L.; Ma, J.; Sun, Y. From data to decisions: big data and AI are shaping the future of radiotherapy and individualized treatment of nasopharyngeal carcinoma. Intell. Oncol. 2025, 1, 52-60.

9. Timofeev, O.; Giron, P.; Lawo, S.; Pichler, M.; Noeparast, M. ERK pathway agonism for cancer therapy: evidence, insights, and a target discovery framework. NPJ. Precis. Oncol. 2024, 8, 70.

10. Beretta, G. L.; Cassinelli, G.; Rossi, G.; et al. Novel insights into taxane pharmacology: an update on drug resistance mechanisms, immunomodulation and drug delivery strategies. Drug. Resist. Updat. 2025, 81, 101223.

11. Zhang, M.; Miao, Y.; Zhao, C.; et al. Fine-tuning the activation behaviors of ternary modular cabazitaxel prodrugs for efficient and on-target oral anti-cancer therapy. Asian. J. Pharm. Sci. 2024, 19, 100908.

12. Cavalli, F. We need intelligent oncology everywhere. Intell. Oncol. 2025, 1, 1-3.

13. Zheng, L.; Chang, R.; Liang, B.; et al. Overcoming drug resistance through extracellular vesicle-based drug delivery system in cancer treatment. Cancer. Drug. Resist. 2024, 7, 50.

14. Zhu, L.; Shen, Z.; Liu, X.; et al. Acid and phosphatase-triggered release and trapping of a prodrug on cancer cell enhance its chemotherapy. Biomaterials 2025, 320, 123254.

15. Zhang, Z.; Zeng, W.; Guo, N.; et al. A nanodrug loading indocyanine green and metformin dually alleviating tumor hypoxia for enhanced chemodynamic/sonodynamic therapy. J. Colloid. Interface. Sci. 2025, 680, 341-55.

16. Wang, Z.; Yang, L.; Li, Y.; et al. An activatable, carrier-free, triple-combination nanomedicine for ALK/EGFR-mutant non-small cell lung cancer highly permeable targeted chemotherapy. New. J. Chem. 2022, 46, 17673-7.

17. Wang, Z.; Song, X. Q.; Xu, W.; Lei, S.; Zhang, H.; Yang, L. Stand up to stand out: natural dietary polyphenols curcumin, resveratrol, and gossypol as potential therapeutic candidates against severe acute respiratory syndrome coronavirus 2 infection. Nutrients 2023, 15, 3885.

18. Wang, Z.; Yang, L. The therapeutic potential of natural dietary flavonoids against SARS-CoV-2 infection. Nutrients 2023, 15, 3443.

19. Takemoto, M.; Delghandi, S.; Abo, M.; et al. Covalent plant natural product that potentiates antitumor immunity. J. Am. Chem. Soc. 2025, 147, 2902-12.

20. Wang, Z.; Wang, N.; Yang, L.; Song, X. Q. Bioactive natural products in COVID-19 therapy. Front. Pharmacol. 2022, 13, 926507.

21. Wang, Z.; Yang, L.; Zhao, X. E. Co-crystallization and structure determination: an effective direction for anti-SARS-CoV-2 drug discovery. Comput. Struct. Biotechnol. J. 2021, 19, 4684-701.

22. Feng, T.; Ahmed, W.; Ahmed, T.; Chen, L. Nanoparticles derived from herbal preparations May represent a novel nucleic acid therapy. Interdiscip. Med. 2024, 2, e20230029.

23. Wang, Z. Advances in the asymmetric total synthesis of natural products using chiral secondary amine catalyzed reactions of α,β-unsaturated aldehydes. Molecules 2019, 24, 3412.

24. Wang, Z.; Yang, L. Chinese herbal medicine: fighting SARS-CoV-2 infection on all fronts. J. Ethnopharmacol. 2021, 270, 113869.

25. Wang, Z.; Yang, L. Turning the tide: natural products and natural-product-inspired chemicals as potential counters to SARS-CoV-2 infection. Front. Pharmacol. 2020, 11, 1013.

26. Anand, U.; Biswas, P.; Kumar, V.; et al. Podophyllum hexandrum and its active constituents: novel radioprotectants. Biomed. Pharmacother. 2022, 146, 112555.

27. Liu, W.; Zhao, D.; Yin, D.; Duan, K.; Wang, Z. Plant origin source, content profile and bioactivity of podophyllotoxin as an important natural anticancer agent. Chem. Biodivers. 2025, 22, e202402375.

28. Guo, Y.; Lu, P.; He, J.; et al. Research progress and quality markers prediction analysis of Dysosma versipellis. Tradit. Med. Res. 2023, 8, 16.

29. Hao, M.; Xu, H. Chemistry and biology of podophyllotoxins: an update. Chemistry 2024, 30, e202302595.

30. Peer, L. A. Phytochemistry, pharmacological activities, and ethnomedicina l importance of the highly valuable endangered plant, Podophyllum hexandrum; A comprehensive review. Inter. J. Biol. Pharm. Allied. Sci. 2024, 13, 951-64.

31. Plotzker, R. E.; Vaidya, A.; Pokharel, U.; Stier, E. A. Sexually transmitted human papillomavirus: update in epidemiology, prevention, and management. Infect. Dis. Clin. North. Am. 2023, 37, 289-310.

32. Yang, C.; Xie, Q.; Zeng, X.; et al. Novel hybrids of podophyllotoxin and formononetin inhibit the growth, migration and invasion of lung cancer cells. Bioorg. Chem. 2019, 85, 445-54.

33. Zhang, W.; Liu, C.; Li, J.; et al. Target analysis and mechanism of podophyllotoxin in the treatment of triple-negative breast cancer. Front. Pharmacol. 2020, 11, 1211.

34. Xu, Y.; Tang, L.; Liu, Y.; et al. Dual-modified albumin-polymer nanocomplexes with enhanced in vivo stability for hepatocellular carcinoma therapy. Colloids. Surf. B. Biointerfaces. 2021, 201, 111642.

35. Zhang, L.; Zhang, Z.; Chen, F.; Chen, Y.; Lin, Y.; Wang, J. Aromatic heterocyclic esters of podophyllotoxin exert anti-MDR activity in human leukemia K562/ADR cells via ROS/MAPK signaling pathways. Eur. J. Med. Chem. 2016, 123, 226-35.

36. Lee, S. O.; Joo, S. H.; Kwak, A. W.; et al. Podophyllotoxin induces ROS-mediated apoptosis and cell cycle arrest in human colorectal cancer cells via p38 MAPK signaling. Biomol. Ther. 2021, 29, 658-66.

37. Zhao, W.; Shen, R.; Li, H. M.; Zhong, J. J.; Tang, Y. J. Podophyllotoxin derivatives-tubulin complex reveals a potential binding site of tubulin polymerization inhibitors in α-tubulin adjacent to colchicine site. Int. J. Biol. Macromol. 2024, 276, 133678.

38. Shah, Z.; Gohar, U. F.; Jamshed, I.; et al. Podophyllotoxin: history, recent advances and future prospects. Biomolecules 2021, 11, 603.

39. Ma, Y.; Chen, L.; Deng, L.; et al. Redox-responsive self-assembled podophyllotoxin twin drug nanoparticles for enhanced intracellular drug delivery. Biomed. Mater. 2023, 18, 045019.

40. Qu, Y.; Zhang, C.; Ma, X.; Gao, Y.; Liu, J.; Wu, L. Synthesis and biological evaluation of NQO1-activated prodrugs of podophyllotoxin as antitumor agents. Bioorg. Med. Chem. 2020, 28, 115821.

41. Shi, R. J.; Fan, H. Y.; Yu, X. H.; Tang, Y. L.; Jiang, J.; Liang, X. H. Advances of podophyllotoxin and its derivatives: patterns and mechanisms. Biochem. Pharmacol. 2022, 200, 115039.

42. Xu, Y.; He, Z.; Chen, L.; Wang, H. Podophyllotoxin derivatives targeting tubulin: an update (2017-2022). Drug. Discov. Today. 2023, 28, 103640.

43. Zhang, W.; Berthelet, J.; Michail, C.; et al. Human CREBBP acetyltransferase is impaired by etoposide quinone, an oxidative and leukemogenic metabolite of the anticancer drug etoposide through modification of redox-sensitive zinc-finger cysteine residues. Free. Radic. Biol. Med. 2021, 162, 27-37.

44. Motyka, S.; Jafernik, K.; Ekiert, H.; et al. Podophyllotoxin and its derivatives: potential anticancer agents of natural origin in cancer chemotherapy. Biomed. Pharmacother. 2023, 158, 114145.

45. Luo, Z.; Yin, F.; Wang, X.; Kong, L. Progress in approved drugs from natural product resources. Chin. J. Nat. Med. 2024, 22, 195-211.

46. Sinkule, J. A. Etoposide: a semisynthetic epipodophyllotoxin. Chemistry, pharmacology, pharmacokinetics, adverse effects and use as an antineoplastic agent. Pharmacotherapy 1984, 4, 61-73.

47. Mosijczuk, A. D.; Ruymann, F. B.; Mease, A. D.; Bernier, R. D. Anthracycline cardiomyopathy in childrenReport of two cases. Cancer 1979, 44, 1582-7.

48. Chauhan, A. S.; Chand, P.; Parashar, T. Lipid-based nanoparticles: strategy for targeted cancer therapy. BIOI 2025, 6.

49. Liao, S.; Li, X.; Lu, Y.; Luo, K. Nanomedicine in immunotherapy for non-small cell lung cancer: applications and perspectives. Small. Methods. 2025, 9, e2401783.

50. Kalayil, N.; Budar, A. A.; Dave, R. K. Nanofibers for drug delivery: design and fabrication strategies. BIOI 2024, 5.

51. Prasad, R.; Ghosh, A.; Patel, V.; et al. Voices of nanomedicine: blueprint guidelines for collaboration in addressing global unmet medical needs. ACS. Nano. 2025, 19, 2979-91.

52. Hadi, M. K.; Zeng, H.; Pantrangi, M.; Sangaraju, S.; Ran, F. Biocompatible polyethersulfone membrane modified by hydrophilic polymer decorated magnetic nanoparticles gilded by facile external magnetic field. Interdiscip. Med. 2024, 2, e20240004.

53. Hu, C.; He, X.; Gao, H.; Zhang, J. DELIVER: the core principles for the clinic translation of nanomedicines. Acta. Pharm. Sin. B. 2025, 15, 1196-8.

54. Liang, X.; Ding, L.; Ma, J.; et al. Enhanced mechanical strength and sustained drug release in carrier-free silver-coordinated anthraquinone natural antibacterial anti-inflammatory hydrogel for infectious wound healing. Adv. Healthc. Mater. 2024, 13, e2400841.

55. Miao, Y.; Wang, X.; Zhao, X.; Hu, Y.; Liu, X.; Deng, D. Co-assembly strategies of natural plant compounds for improving their bioavailability. Food. Med. Homol. 2025, 2, 9420022.

56. Huang, J.; Yang, J.; Yang, Y.; et al. Mitigating doxorubicin-induced cardiotoxicity and enhancing anti-tumor efficacy with a metformin-integrated self-assembled nanomedicine. Adv. Sci. 2025, 12, e2415227.

57. Sun, X.; Zhao, P.; Lin, J.; Chen, K.; Shen, J. Recent advances in access to overcome cancer drug resistance by nanocarrier drug delivery system. Cancer. Drug. Resist. 2023, 6, 390-415.

58. Wang, X.; Xu, Z.; Wang, J.; et al. A mitochondria-targeted biomimetic nanomedicine capable of reversing drug resistance in colorectal cancer through mitochondrial dysfunction. Adv. Sci. 2025, 12, e2410630.

59. Liu, R.; Zhao, R.; Yu, Z.; Liu, F.; Liu, C.; Wu, X. Metal-organic coordinated self-assembled nanomedicine for enhanced cuproptosis-mediated chemo-photo-chemodynamic synergistic therapy of non-small cell lung cancer. Chem. Eng. J. 2025, 509, 161305.

60. Tao, J.; Ning, W.; Lu, W.; et al. Smart self-transforming nano-systems for overcoming biological barrier and enhancing tumor treatment efficacy. J. Control. Release. 2025, 380, 85-107.

61. Germain, M.; Caputo, F.; Metcalfe, S.; et al. Delivering the power of nanomedicine to patients today. J. Control. Release. 2020, 326, 164-71.

62. Jarrett, T. R.; Pregelj, L.; Bell, C. A.; Fletcher, N. L.; Thurecht, K. J. Material trends and clinical costings in systematically identified CDER-approved nanomedicines. Adv. Ther. 2024, 7, 2400124.

63. Reddy, K. T. K.; Reddy, A. S. Recent breakthroughs in drug delivery systems for targeted cancer therapy: an overview. Cell. Mol. Biomed. Rep. 2025, 5, 13-27.

64. Wu, Z.; Chen, J.; Wang, B.; Wen, Q.; Fu, S. Nanoparticle-based drug delivery strategies for targeted therapy to hypoxic solid tumors. Chem. Eng. J. 2024, 502, 158081.

65. Thomas, M. R.; Badekila, A. K.; Pai, V.; et al. Navigating tumor microenvironment barriers with nanotherapeutic strategies for targeting metastasis. Adv. Healthc. Mater. 2025, 14, e2403107.

66. Miranda-Vera, C.; Hernández, ÁP.; García-García, P.; Díez, D.; García, P. A.; Castro, MÁ. Bioconjugation of podophyllotoxin and nanosystems: approaches for boosting its biopharmaceutical and antitumoral profile. Pharmaceuticals 2025, 18, 169.

67. Roy, A.; Zhao, Y.; Yang, Y.; Szeitz, A.; Klassen, T.; Li, S. D. Selective targeting and therapy of metastatic and multidrug resistant tumors using a long circulating podophyllotoxin nanoparticle. Biomaterials 2017, 137, 11-22.

68. Zhang, C.; Zuo, Y.; Zhang, T.; et al. Advances in nanoscale carrier-based approaches to reduce toxicity and enhance efficacy of podophyllotoxin. Acta. Mater. Med. 2023, 2, 430-48.

69. Yadav, R.; Chawra, H. S.; Dubey, G.; et al. Herbal based nanoparticles as a possible and potential treatment of cancer: a review. Explor. Target. Antitumor. Ther. 2025, 6, 1002285.

70. Florczak, A.; Grzechowiak, I.; Deptuch, T.; Kucharczyk, K.; Kaminska, A.; Dams-Kozlowska, H. Silk particles as carriers of therapeutic molecules for cancer treatment. Materials 2020, 13, 4946.

71. Appidi, T.; China, D.; Ștefan, G. R.; et al. Engineered multifunctional nanoparticles for enhanced radiation therapy: three-in-one approach for cancer treatment. Mol. Cancer. 2025, 24, 68.

72. Liu, H.; Zou, J.; Li, X.; Ge, Y.; He, W. Drug delivery for platinum therapeutics. J. Control. Release. 2025, 380, 503-23.

73. Tenchov, R.; Hughes, K. J.; Ganesan, M.; et al. Transforming medicine: cutting-edge applications of nanoscale materials in drug delivery. ACS. Nano. 2025, 19, 4011-38.

74. Dechbumroong, P.; Hu, R.; Keaswejjareansuk, W.; Namdee, K.; Liang, X. J. Recent advanced lipid-based nanomedicines for overcoming cancer resistance. Cancer. Drug. Resist. 2024, 7, 24.

75. Aalhate, M.; Mahajan, S.; Dhuri, A.; Singh, P. K. Biohybrid nano-platforms manifesting effective cancer therapy: fabrication, characterization, challenges and clinical perspective. Adv. Colloid. Interface. Sci. 2025, 335, 103331.

76. Yang, Y.; Long, K.; Chu, Y.; Lu, H.; Wang, W.; Zhan, C. Photoresponsive drug delivery systems: challenges and progress. Adv. Funct. Mater. 2024, 34, 2402975.

77. Puccetti, M.; Pariano, M.; Schoubben, A.; Giovagnoli, S.; Ricci, M. Biologics, theranostics, and personalized medicine in drug delivery systems. Pharmacol. Res. 2024, 201, 107086.

78. Hu, S.; Zhao, R.; Shen, Y.; Lyu, B. Revolutionizing drug delivery: the power of stimulus-responsive nanoscale systems. Chem. Eng. J. 2024, 496, 154265.

79. Wang, Z.; Yang, L. Natural-product-based, carrier-free, noncovalent nanoparticles for tumor chemo-photodynamic combination therapy. Pharmacol. Res. 2024, 203, 107150.

80. Beach, M. A.; Nayanathara, U.; Gao, Y.; et al. Polymeric nanoparticles for drug delivery. Chem. Rev. 2024, 124, 5505-616.

81. Zhou, H.; Yang, Z.; Jin, G.; et al. Polymeric nanoparticles simultaneously delivering paclitaxel prodrug and combretastatin A4 with exceptionally high drug loading for cancer combination therapy. Nano. Lett. 2025, 25, 3479-88.

82. Meng, F.; He, Y.; Zhao, J.; et al. Timely administration of drug combination improves chemoimmunotherapy of an immune-cold tumor. J. Control. Release. 2025, 381, 113579.

83. Sharma, R.; Yadav, V.; Jha, S.; Dighe, S.; Jain, S. Unveiling the potential of ursolic acid modified hyaluronate nanoparticles for combination drug therapy in triple negative breast cancer. Carbohydr. Polym. 2024, 338, 122196.

84. Chen, H.; Xing, C.; Lei, H.; et al. ROS-driven supramolecular nanoparticles exhibiting efficient drug delivery for chemo/Chemodynamic combination therapy for Cancer treatment. J. Control. Release. 2024, 368, 637-49.

85. Li, K.; Li, J.; Li, Z.; Men, L.; Zuo, H.; Gong, X. Cisplatin-based combination therapies: Their efficacy with a focus on ginsenosides co-administration. Pharmacol. Res. 2024, 203, 107175.

86. Zhang, X.; Lou, X.; Qiao, H.; et al. Supramolecular self-sensitized dual-drug nanoassemblies potentiating chemo-photodynamic therapy for effective cancer treatment. Int. J. Pharm. 2024, 662, 124496.

87. Wang, Q.; Sun, M.; Li, C.; et al. A computer-aided chem-photodynamic drugs self-delivery system for synergistically enhanced cancer therapy. Asian. J. Pharm. Sci. 2021, 16, 203-12.

88. Xiong, H.; Du, C.; Ye, J.; et al. Therapeutic co-assemblies for synergistic NSCLC treatment through dual topoisomerase I and tubulin inhibitors. J. Control. Release. 2025, 377, 485-94.

89. Wang, X.; Wang, Y.; Yu, J.; et al. Reduction-hypersensitive podophyllotoxin prodrug self-assembled nanoparticles for cancer treatment. Pharmaceutics 2023, 15, 784.

90. Lin, Z.; Wang, Y.; Li, W.; et al. A natural compound-empowered podophyllotoxin prodrug nanoassembly magnifies efficacy-toxicity benefits in cancer chemotherapy. Asian. J. Pharm. Sci. 2024, 19, 100892.

91. Liu, T.; Xia, F.; Zheng, Y.; et al. Steric hindrance-engineered redox-responsive disulfide-bridged homodimeric prodrug nanoassemblies for spatiotemporally balanced cancer chemotherapy. J. Med. Chem. 2025, 68, 11916-27.

92. Yu, J.; Zhang, B.; Li, J.; et al. “Transforming enemy into friend” strategy-based stimuli responsive dual-drug liposomes for synergistic chemo-photodynamic therapy. Chem. Eng. J. 2024, 487, 150526.

93. Cheng, X.; Yu, P.; Zhou, X.; et al. Enhanced tumor homing of pathogen-mimicking liposomes driven by R848 stimulation: A new platform for synergistic oncology therapy. Acta. Pharm. Sin. B. 2022, 12, 924-38.

94. Wang, R.; Zhao, Y.; Huang, Z.; et al. Self-assembly of podophyllotoxin-loaded lipid bilayer nanoparticles for highly effective chemotherapy and immunotherapy via downregulation of programmed cell death ligand 1 production. ACS. Nano. 2022, 16, 3943-54.

95. Wang, R.; Xuan, Y.; Zhao, Y.; et al. Cationic nanoparticulate system for codelivery of MicroRNA-424 and podophyllotoxin as a multimodal anticancer therapy. Mol. Pharm. 2022, 19, 2092-104.

96. Ling, X.; Jiang, X.; Li, Y.; et al. Sequential treatment of bioresponsive nanoparticles elicits antiangiogenesis and apoptosis and synergizes with a CD40 agonist for antitumor immunity. ACS. Nano. 2021, 15, 765-80.

97. Zhang, L.; Li, R.; Zhang, H.; Suo, X.; Guo, B. DSPE-mPEG2000-modified podophyllotoxin long-circulating liposomes for targeted delivery: their preparation, characterization, and evaluation. Curr. Drug. Deliv. 2025, 22, 1481-92.

98. Li, M.; Zhao, Y.; Sun, J.; et al. pH/reduction dual-responsive hyaluronic acid-podophyllotoxin prodrug micelles for tumor targeted delivery. Carbohydr. Polym. 2022, 288, 119402.

99. Li, M.; Zhang, L.; Xuan, Y.; et al. pH-sensitive hyaluronic acid-targeted prodrug micelles constructed via a one-step reaction for enhanced chemotherapy. Int. J. Biol. Macromol. 2022, 206, 489-500.

100. Zhang, C.; Chen, Y.; Zuo, Y.; et al. Dual targeting of FR+CD44 overexpressing tumors by self-assembled nanoparticles quantitatively conjugating folic acid-hyaluronic acid to the GSH-sensitively modified podophyllotoxin. Chem. Eng. J. 2025, 505, 159276.

101. Liu, M.; Zhang, Z. X.; Wang, J. H.; et al. Immunomodulatory and anti-ovarian cancer effects of novel astragalus polysaccharide micelles loaded with podophyllotoxin. Int. J. Biol. Macromol. 2025, 290, 138960.

102. Xiang, Y.; Wang, B.; Yang, W.; et al. Mitocytosis mediated by an enzyme-activable mitochondrion-disturbing polymer-drug conjugate enhances active penetration in glioblastoma therapy. Adv. Mater. 2024, 36, e2311500.

103. Xiang, C.; Fu, Y.; Hao, T.; et al. Podophyllotoxin-loaded PEGylated E-selectin peptide conjugate targeted cancer site to enhance tumor inhibition and reduce side effect. Eur. J. Med. Chem. 2023, 260, 115780.

104. Zhang, W.; Liu, S.; Hou, Y.; et al. Functional nanoplatform for modulating cellular forces to enhance antitumor immunity via mechanotransduction. J. Control. Release. 2025, 379, 850-65.

105. Li, Y.; Wang, L.; Xiao, F.; Yin, T.; Chu, Z.; Yang, B. Targeted cancer cell supramolecular nanoparticles self-assembled from acyclic cucurbit[n]urils for combined chemo/chemodynamic/photothermal therapy. Colloid. Surface. A. 2025, 709, 136124.

106. Jia, Y.; Sun, C.; Chen, T.; et al. Recent advance in phytonanomedicine and mineral nanomedicine delivery system of the treatment for acute myeloid leukemia. J. Nanobiotechnol. 2023, 21, 240.

107. Fu, Z.; Zhou, D.; Liu, Z.; Ni, D. GSH-responsive nanomedicine for disease smart imaging and therapy. Coordin. Chem. Rev. 2025, 533, 216554.

108. Zhang, X.; Duan, Q.; Zhuang, J.; Huang, X. Synthetic biology-based strategy for nanomedicine design. Small. Methods. 2025, 9, e2401969.

109. Zhu, L.; Zhong, W.; Meng, X.; et al. Polymeric nanocarriers delivery systems in ischemic stroke for targeted therapeutic strategies. J. Nanobiotechnol. 2024, 22, 424.

110. Song, K.; Ming, J.; Tao, B.; et al. Emerging glucose oxidase-delivering nanomedicines for enhanced tumor therapy. J. Control. Release. 2025, 381, 113580.

111. Fan, M.; Zheng, X.; Cheng, W.; et al. Reinforcing carrier-free photothermal nanodrugs through flavonol-driven assembly. Adv. Funct. Mater. 2024, 34, 2402455.

112. Ren, S.; Zhang, M.; Cai, C.; et al. A carrier-free ultrasound-responsive polyphenol nanonetworks with enhanced sonodynamic-immunotherapy for synergistic therapy of breast cancer. Biomaterials 2025, 317, 123109.

113. Seo, M.; Jeong, Y.; Seo, B.; et al. Lenalidomide-utilizing self-assembled immunogenic cell death-inducing heparin/doxorubicin nanocomplex for anticancer immunotherapy. Nano. Today. 2025, 62, 102677.

114. Wang, Z.; Xu, W.; Lei, S.; et al. A computer-aided, carrier-free drug delivery system with enhanced cytotoxicity and biocompatibility: a universal model for multifunctional lung cancer therapy. Colloids. Surf. B. Biointerfaces. 2025, 250, 114557.

115. Wang, H.; Lu, X.; Fan, J.; et al. A carrier-free DNA nanoplatform for efficient three-in-one tumor therapy in vivo. Nano. Today. 2025, 62, 102734.

116. Fang, F.; Chen, X. Carrier-free nanodrugs: from bench to bedside. ACS. Nano. 2024, 18, 23827-41.

117. Sun, Y.; Wang, S.; Liu, J.; et al. Tailoring modification modules of paclitaxel prodrug nanoassemblies to manipulate efficacy and tolerance. Nano. Today. 2024, 56, 102275.

118. Cao, Y.; Zhao, X.; Miao, Y.; Wang, X.; Deng, D. How the versatile self-assembly in drug delivery system to afford multimodal cancer therapy? Adv. Healthc. Mater. 2025, 14, e2403715.

119. Li, S.; Jiang, S.; Rahman, M. S. U.; et al. Pre-induced ICD membrane-coated carrier-free nanoparticles for the personalized lung cancer immunotherapy. Small. Methods. 2023, 7, e2201569.

120. Hao, Y.; Li, Y.; Zang, W.; et al. Self-assembled doxorubicin prodrug riding on the albumin express train enable tumor targeting and bio-activation. J. Colloid. Interface. Sci. 2025, 684, 97-108.

121. Kuang, Y.; Li, Z.; Chen, H.; Wang, X.; Wen, Y.; Chen, J. Advances in self-assembled nanotechnology in tumor therapy. Colloids. Surf. B. Biointerfaces. 2024, 237, 113838.

122. Liu, L.; Zhang, X. Carrier-free nanomedicines for cancer treatment. Prog. Mater. Sci. 2022, 125, 100919.

123. An, J.; Zhang, Z.; Zhang, J.; Zhang, L.; Liang, G. Research progress in tumor therapy of carrier-free nanodrug. Biomed. Pharmacother. 2024, 178, 117258.

124. Ji, H.; Wang, W.; Qiao, O.; Hao, X. Review of carrier-free self-assembly of anticancer nanodrugs. ACS. Appl. Nano. Mater. 2024, 7, 4564-87.

125. Behera, A.; Padhi, S. Passive and active targeting strategies for the delivery of the camptothecin anticancer drug: a review. Environ. Chem. Lett. 2020, 18, 1557-67.

126. Zhang, X.; Chen, Y.; Li, X.; et al. Carrier-free self-assembled nanomedicine based on celastrol and galactose for targeting therapy of hepatocellular carcinoma via inducing ferroptosis. Eur. J. Med. Chem. 2024, 267, 116183.

127. Jia, W.; Yang, M.; Zhang, W.; Xu, W.; Zhang, Y. Carrier-free self-assembled nanomedicines for promoting apoptosis and inhibiting proliferation in hepatocellular carcinoma. ACS. Biomater. Sci. Eng. 2024, 10, 4347-58.

128. Pei, Z.; Hu, S.; Wei, H.; et al. Multifunctional carrier-free nanodrugs for enhanced delivery and efficacy of hydrophobic antitumor drugs. Chin. Chem. Lett. 2025, 110981.

129. Karaosmanoglu, S.; Zhou, M.; Shi, B.; Zhang, X.; Williams, G. R.; Chen, X. Carrier-free nanodrugs for safe and effective cancer treatment. J. Control. Release. 2021, 329, 805-32.

130. Huang, L.; Zhao, S.; Fang, F.; Xu, T.; Lan, M.; Zhang, J. Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy. Biomaterials 2021, 268, 120557.

131. Li, H.; Zang, W.; Mi, Z.; et al. Tailoring carrier-free nanocombo of small-molecule prodrug for combinational cancer therapy. J. Control. Release. 2022, 352, 256-75.

132. Yang, L.; Zhang, Y.; Lai, Y.; et al. A computer-aided, heterodimer-based "triadic" carrier-free drug delivery platform to mitigate multidrug resistance in lung cancer and enhance efficiency. J. Colloid. Interface. Sci. 2025, 677, 523-40.

133. Tong, L. W.; Le, J. Q.; Song, X. H.; et al. Synergistic anti-tumor effect of dual drug co-assembled nanoparticles based on ursolic acid and sorafenib. Colloids. Surf. B. Biointerfaces. 2024, 234, 113724.

134. Feng, X.; Brown, C. M.; Wang, H.; et al. Carrier-free chemo-phototherapeutic nanomedicines with endo/lysosomal escape function enhance the therapeutic effect of drug molecules in tumors. J. Mater. Chem. B. 2024, 12, 6703-15.

135. Cheng, G.; Wang, H.; Zhang, C.; et al. Multifunctional nano-photosensitizer: a carrier-free aggregation-induced emission nanoparticle with efficient photosensitization and pH-responsibility. Chem. Eng. J. 2020, 390, 124447.

136. Liu, Y.; Long, K.; Wang, T.; Kang, W.; Wang, W. Carrier-free nanodrugs for stemness inhibition-enhanced photodynamic therapy. Aggregate 2023, 4, e284.

137. Xue, Y.; Chen, K.; Chen, Y.; et al. Engineering diselenide-IR780 homodimeric nanoassemblies with enhanced photodynamic and immunotherapeutic effects for triple-negative breast cancer treatment. ACS. Nano. 2023, 17, 22553-70.

138. Du, X.; Hou, Y.; Huang, J.; et al. Cytosolic delivery of the immunological adjuvant Poly I:C and cytotoxic drug crystals via a carrier-free strategy significantly amplifies immune response. Acta. Pharm. Sin. B. 2021, 11, 3272-85.

139. Kong, L.; Huang, P.; Yuan, F.; et al. A metal-free bionic nanozyme for efficient inhibition of cancer recurrence and metastasis following photothermal therapy. Chin. Chem. Lett. 2025, 36, 111030.

140. Wang, Z.; Sun, X.; Sun, M.; Wang, C.; Yang, L. Game changers: blockbuster small-molecule drugs approved by the FDA in 2024. Pharmaceuticals 2025, 18, 729.

141. Fan, W.; Yung, B.; Huang, P.; Chen, X. Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 2017, 117, 13566-638.

142. Wang, Y.; Chen, W.; Mo, Z.; He, Y.; Nie, K. Therapeutic potential of the citrus flavonoid hesperidin and its aglycone hesperetin against chemotherapy-induced toxicity. Tradit. Med. Res. 2025, 10, 22.

143. Danovi, S. Optimizing combination immunotherapy in lung cancer. Nat. Genet. 2024, 56, 2296.

144. Besse, B.; Pons-Tostivint, E.; Park, K.; et al. Biomarker-directed targeted therapy plus durvalumab in advanced non-small-cell lung cancer: a phase 2 umbrella trial. Nat. Med. 2024, 30, 716-29.

145. Chong, L. M.; Tng, D. J. H.; Tan, L. L. Y.; Chua, M. L. K.; Zhang, Y. Recent advances in radiation therapy and photodynamic therapy. Appl. Phys. Rev. 2021, 8, 041322.

146. Yang, H.; Liu, R.; Xu, Y.; Qian, L.; Dai, Z. Photosensitizer nanoparticles boost photodynamic therapy for pancreatic cancer treatment. Nanomicro. Lett. 2021, 13, 35.

147. Chen, J.; Xu, X.; Wang, K.; et al. Hypoxia-activated liposomes enable synergistic photodynamic therapy for oral cancer. Adv. Healthc. Mater. 2025, 14, e2404395.

148. Dong, P.; Hu, J.; Yu, S.; et al. A Mitochondrial oxidative stress amplifier to overcome hypoxia resistance for enhanced photodynamic therapy. Small. Methods. 2021, 5, e2100581.

149. Xiong, J.; Wang, X.; Kim, J.; et al. Tumor-activated prodrug with synergistic anti-stemness chemical and photodynamic therapies. Adv. Funct. Mater. 2024, 34, 2312590.

150. Zhang, H.; Li, J.; Li, Y.; et al. Modified oxygen metabolism toward “sunlight-friendly” photodynamic therapy. Adv. Funct. Mater. 2025, 35, 2414817.

151. Pham, T. C.; Nguyen, V. N.; Choi, Y.; Lee, S.; Yoon, J. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem. Rev. 2021, 121, 13454-619.

152. Kolarikova, M.; Hosikova, B.; Dilenko, H.; et al. Photodynamic therapy: innovative approaches for antibacterial and anticancer treatments. Med. Res. Rev. 2023, 43, 717-74.

153. Mishchenko, T. A.; Balalaeva, I. V.; Vedunova, M. V.; Krysko, D. V. Ferroptosis and photodynamic therapy synergism: enhancing anticancer treatment. Trends. Cancer. 2021, 7, 484-7.

154. Zhang, X.; Zhang, X.; Chen, S.; et al. Glutathione-depleting polyprodrug nanoparticle for enhanced photodynamic therapy and cascaded locoregional chemotherapy. J. Colloid. Interface. Sci. 2024, 670, 279-87.

155. Shen, H.; Zhang, Y.; Wang, P.; et al. 2,3,5,4’-tetrahydroxystilbene-2-O-b-D-glucoside modulates CHEK2 and CCND1 alternative splicing to inhibit MCF-7 cells proliferation. Tradit. Med. Res. 2024, 9, 4.

156. Andreeva, O. E.; Sorokin, D. V.; Vinokurova, S. V.; et al. Breast cancer cell resistance to hormonal and targeted therapeutics is correlated with the inactivation of the NR6A1 axis. Cancer. Drug. Resist. 2024, 7, 48.

157. Xu, M.; Qi, Y.; Liu, G.; Song, Y.; Jiang, X.; Du, B. Size-dependent in vivo transport of nanoparticles: implications for delivery, targeting, and clearance. ACS. Nano. 2023, 17, 20825-49.

158. Li, Z.; Zhang, Z.; Ma, L.; et al. Combining multiple photosensitizer modules into one supramolecular system for synergetic enhanced photodynamic therapy. Angew. Chem. Int. Ed. 2024, 63, e202400049.

159. Han, L.; Liang, S.; Mu, W.; et al. Amphiphilic small molecular mates match hydrophobic drugs to form nanoassemblies based on drug-mate strategy. Asian. J. Pharm. Sci. 2022, 17, 129-38.

160. Shan, X.; Cai, Y.; Zhu, B.; et al. Computer-aided design of self-assembled nanoparticles to enhance cancer chemoimmunotherapy via dual-modulation strategy. Adv. Healthc. Mater. 2025, 14, e2404261.

161. Yang, Y.; Zuo, S.; Zhang, J.; et al. Prodrug nanoassemblies bridged by Mono-/Di-/Tri-sulfide bonds: exploration is for going further. Nano. Today. 2022, 44, 101480.

162. Xu, X.; Liu, A.; Liu, S.; et al. Application of molecular dynamics simulation in self-assembled cancer nanomedicine. Biomater. Res. 2023, 27, 39.

163. Zheng, N.; Xie, D.; Wang, C.; et al. Water-soluble, zwitterionic poly-photosensitizers as carrier-free, photosensitizer-self-delivery system for in vivo photodynamic therapy. ACS. Appl. Mater. Interfaces. 2019, 11, 44007-17.

164. Wei, W.; Zhang, X.; Chen, X.; Zhou, M.; Xu, R.; Zhang, X. Smart surface coating of drug nanoparticles with cross-linkable polyethylene glycol for bio-responsive and highly efficient drug delivery. Nanoscale 2016, 8, 8118-25.

165. Li, Y.; Lin, J.; Cai, Z.; et al. Tumor microenvironment-activated self-recognizing nanodrug through directly tailored assembly of small-molecules for targeted synergistic chemotherapy. J. Control. Release. 2020, 321, 222-35.

166. Xue, K.; Wei, F.; Lin, J.; et al. Tumor acidity-responsive carrier-free nanodrugs based on targeting activation via ICG-templated assembly for NIR-II imaging-guided photothermal-chemotherapy. Biomater. Sci. 2021, 9, 1008-19.

167. Xu, H.; Gao, W.; Pan, D.; et al. Puerarin modulation of CENPA affects downstream PLK1 and CCNB1 expression to inhibit bladder cancer cell proliferation. Tradit. Med. Res. 2024, 9, 52.

168. Yang, L.; Lei, S.; Xu, W.; et al. Rising above: exploring the therapeutic potential of natural product-based compounds in human cancer treatment. Tradit. Med. Res. 2025, 10, 18.

169. Chen, Y.; Chen, S.; Chen, K.; Ji, L.; Cui, S. Magnolol and 5-fluorouracil synergy inhibition of metastasis of cervical cancer cells by targeting PI3K/AKT/mTOR and EMT pathways. Chin. Herb. Med. 2024, 16, 94-105.

170. Wang, X.; Miao, Y.; Zhao, X.; Liu, X.; Hu, Y.; Deng, D. Perspectives on organ-on-a-chip technology for natural products evaluation. Food. Med. Homol. 2024, 1, 9420013.

171. Liu, T.; Yang, L.; Dong, C.; Qi, D.; Ji, B.; Gao, Q. Spectrum-effect relationship between components and antitumor activity of Lonicerae Japonicae Flos based on orthogonal partial least squares regression. Sci. Tradit. Chin. Med. 2024, 2, 138-47.

172. Cheng, Y.; Han, L.; Tang, Y.; Wang, Q. Xiaoyaosan inhibits liver metastases of colorectal cancer in vivo by regulating neutrophil extracellular traps formation. Tradit. Med. Res. 2025, 10, 46.

173. Zhang, J.; Zhou, J.; Wang, W.; et al. Quercetin exerts anti-breast cancer effect by inducing cellular senescence. Tradit. Med. Res. 2025, 10, 62.

174. Teng, C.; Chen, J. W.; Shen, L. S.; Chen, S.; Chen, G. Q. Research advances in natural sesquiterpene lactones: overcoming cancer drug resistance through modulation of key signaling pathways. Cancer. Drug. Resist. 2025, 8, 13.

175. Wang, S.; Dong, S.; Dong, Q.; Lin, W.; Dong, M.; Liu, D. Natural product-induced oxidative stress-synergistic anti-tumor effects of chemotherapeutic agents. Tradit. Med. Res. 2024, 9, 14.

176. Park, J.; Sun, B.; Yeo, Y. Albumin-coated nanocrystals for carrier-free delivery of paclitaxel. J. Control. Release. 2017, 263, 90-101.

177. Mohankumar, M.; Fernandes, S.; Cavalieri, F.; Cortez-Jugo, C.; Caruso, F. Ultrasound-driven coassembly of anticancer drugs into carrier-free particles. ACS. Nano. 2025, 19, 13366-80.

178. Wang, H.; Qiao, C.; Guan, Q.; Wei, M.; Li, Z. Nanoparticle-mediated synergistic anticancer effect of ferroptosis and photodynamic therapy: novel insights and perspectives. Asian. J. Pharm. Sci. 2023, 18, 100829.

179. Yang, S. B.; Lee, D. N.; Lee, J. H.; et al. Design and evaluation of a carrier-free prodrug-based palmitic-DEVD-doxorubicin conjugate for targeted cancer therapy. Bioconjug. Chem. 2023, 34, 333-44.

180. Meng, F.; Ren, S.; Wang, G.; et al. Carrier-free nanoparticles via coassembly of paclitaxel and gambogic acid with folate-functionalized albumin for targeted tumor treatment. ACS. Appl. Nano. Mater. 2024, 7, 26941-51.

181. Liu, Y.; Luo, Y.; Gao, Y.; et al. Carrier-free biomimetic organic nanoparticles with super-high drug loading for targeted NIR-II excitable triple-modal bioimaging and phototheranostics. Small 2024, 20, e2406003.

182. Yang, L.; Xu, J.; Xie, Z.; Song, F.; Wang, X.; Tang, R. Carrier-free prodrug nanoparticles based on dasatinib and cisplatin for efficient antitumor in vivo. Asian. J. Pharm. Sci. 2021, 16, 762-71.

183. Fan, Z.; Wang, Y.; Xiang, S.; et al. Dual-self-recognizing, stimulus-responsive and carrier-free methotrexate-mannose conjugate nanoparticles with highly synergistic chemotherapeutic effects. J. Mater. Chem. B. 2020, 8, 1922-34.

184. Hu, L.; Dong, G.; Li, X.; Li, S.; Lv, Y. A free-radical initiator-based carrier-free smart nanobomb for targeted synergistic therapy of hypoxic breast cancer. RSC. Adv. 2025, 15, 3098-109.

185. Dong, X.; Liu, H.; Liu, H.; Zhang, X.; Deng, X. Carrier-free nanomedicines: mechanisms of formation and biomedical applications. Giant 2024, 18, 100256.

186. Allen, T. M.; Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug. Deliv. Rev. 2013, 65, 36-48.

187. Cheng, Z.; Huang, H.; Yin, M.; Liu, H. Applications of liposomes and lipid nanoparticles in cancer therapy: current advances and prospects. Exp. Hematol. Oncol. 2025, 14, 11.

188. Menachem, R.; Nudelman, I.; Vorontsova, A.; et al. Bone marrow-targeted liposomes loaded with bortezomib overcome multiple myeloma resistance. ACS. Nano. 2025, 19, 11684-701.

189. Liu, Y.; Xie, Y.; Chen, Y.; et al. A protease-cleavable liposome for co-delivery of anti-PD-L1 and doxorubicin for colon cancer therapy in mice. Nat. Commun. 2025, 16, 2854.

190. Xia, J.; Gan, Z.; Zhang, J.; et al. Geometric-aware deep learning enables discovery of bifunctional ligand-based liposomes for tumor targeting therapy. Nano. Today. 2025, 61, 102668.

191. Ghosh, R.; De, M. Liposome-based antibacterial delivery: an emergent approach to combat bacterial infections. ACS. Omega. 2023, 8, 35442-51.

192. Wu, S.; Lu, J. Liposome-enabled nanomaterials for muscle regeneration. Small. Methods. 2025, 9, e2402154.

193. Trivedi, J.; Yasir, M.; Maurya, R. K.; Tripathi, A. S. Aptamer-based theranostics in oncology: design strategies and limitations. BIOI 2024, 5.

194. Zhao, Y.; Qin, J.; Yu, D.; et al. Polymer-locking fusogenic liposomes for glioblastoma-targeted siRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 2024, 19, 1869-79.

195. Wang, G.; Lu, H.; Pan, Y.; Qi, Y.; Huang, Y. Ultrasound-sensitive targeted liposomes as a gene delivery system for the synergistic treatment of hepatocellular carcinoma. Small 2024, 20, e2406182.

196. Bhattacherjee, A.; Daskhan, G. C.; Bains, A.; et al. Increasing phagocytosis of microglia by targeting CD33 with liposomes displaying glycan ligands. J. Control. Release. 2021, 338, 680-93.

197. Ren, X.; Xue, R.; Luo, Y.; et al. Programmable melanoma-targeted radio-immunotherapy via fusogenic liposomes functionalized with multivariate-gated aptamer assemblies. Nat. Commun. 2024, 15, 5035.

198. Di, J.; Xie, F.; Xu, Y. When liposomes met antibodies: drug delivery and beyond. Adv. Drug. Deliv. Rev. 2020, 154-5, 151-62.

199. Park, Y. I.; Kwon, S. H.; Lee, G.; et al. pH-sensitive multi-drug liposomes targeting folate receptor β for efficient treatment of non-small cell lung cancer. J. Control. Release. 2021, 330, 1-14.

200. Yu, Y.; Zu, C.; He, D.; et al. pH-dependent reversibly activatable cell-penetrating peptides improve the antitumor effect of artemisinin-loaded liposomes. J. Colloid. Interface. Sci. 2021, 586, 391-403.

201. Lee, Y.; Song, S.; Yang, S.; et al. Photo-induced crosslinked and anti-PD-L1 peptide incorporated liposomes to promote PD-L1 multivalent binding for effective immune checkpoint blockade therapy. Acta. Pharm. Sin. B. 2024, 14, 1428-40.

202. Wang, C.; Lan, X.; Zhu, L.; et al. Construction strategy of functionalized liposomes and multidimensional application. Small 2024, 20, e2309031.

203. Rahman, M. M.; Wang, J.; Wang, G.; et al. Chimeric nanobody-decorated liposomes by self-assembly. Nat. Nanotechnol. 2024, 19, 818-24.

204. Jourdain, M. A.; Eyer, J. Recent advances in liposomes and peptide-based therapeutics for glioblastoma treatment. J. Control. Release. 2024, 376, 732-52.

205. Yang, Y.; Chu, Y.; Li, C.; et al. Brain-targeted drug delivery by in vivo functionalized liposome with stable D-peptide ligand. J. Control. Release. 2024, 373, 240-51.

206. Zhang, Y.; Zhu, J.; Sun, H.; Li, J. Modulation of tumor hypoxia and redox microenvironment using nanomedicines for enhanced cancer photodynamic therapy. Appl. Mater. Today. 2022, 29, 101687.

207. Wang, C.; Liang, C.; Hao, Y.; et al. Photodynamic creation of artificial tumor microenvironments to collectively facilitate hypoxia-activated chemotherapy delivered by coagulation-targeting liposomes. Chem. Eng. J. 2021, 414, 128731.

208. Yan, K.; Mu, C.; Zhang, C.; et al. Pt nanoenzyme decorated yolk-shell nanoplatform as an oxygen generator for enhanced multi-modality imaging-guided phototherapy. J. Colloid. Interface. Sci. 2022, 616, 759-68.

209. Ren, C.; Xu, X.; Yan, D.; et al. Dual-action nanoplatform with a synergetic strategy to promote oxygen accumulation for enhanced photodynamic therapy against hypoxic tumors. Acta. Biomater. 2022, 146, 465-77.

210. Sun, Y.; Zhao, D.; Wang, G.; et al. Recent progress of hypoxia-modulated multifunctional nanomedicines to enhance photodynamic therapy: opportunities, challenges, and future development. Acta. Pharm. Sin. B. 2020, 10, 1382-96.

211. Zhao, L. P.; Zheng, R. R.; Chen, H. Q.; et al. Self-delivery nanomedicine for O2-economized photodynamic tumor therapy. Nano. Lett. 2020, 20, 2062-71.

212. Xu, T.; Ma, Y.; Yuan, Q.; et al. Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS. Nano. 2020, 14, 3414-25.

213. Wang, Y.; Li, N.; Qu, L.; et al. Hemoglobin nanoclusters-mediated regulation of KPNA4 in hypoxic tumor microenvironment enhances photodynamic therapy in hepatocellular carcinoma. J. Nanobiotechnol. 2024, 22, 473.

214. Lee, H. S.; Yoo, S.; Lee, S. M.; et al. Hypoxia-alleviating hemoglobin nanoclusters for sensitizing chemo-photodynamic therapy of cervical cancer. Chem. Eng. J. 2023, 457, 141224.

215. Han, W.; Ding, J.; Qiao, B.; et al. Self-sustained biophotocatalytic nano-organelle reactors with programmable DNA switches for combating tumor metastasis. Adv. Mater. 2025, 37, e2415030.

216. Li, J.; Xue, Y.; Tian, J.; et al. Fluorinated-functionalized hyaluronic acid nanoparticles for enhanced photodynamic therapy of ocular choroidal melanoma by ameliorating hypoxia. Carbohydr. Polym. 2020, 237, 116119.

217. Zhang, Y.; Liao, Y.; Tang, Q.; Lin, J.; Huang, P. Biomimetic nanoemulsion for synergistic photodynamic-immunotherapy against hypoxic breast tumor. Angew. Chem. Int. Ed. 2021, 60, 10647-53.

218. Zhang, S.; Li, Z.; Wang, Q.; et al. An NIR-II photothermally triggered "oxygen bomb" for hypoxic tumor programmed cascade therapy. Adv. Mater. 2022, 34, e2201978.

219. Zhang, S.; Yang, N.; Sun, S.; et al. Dually fluorinated unimolecular micelles for stable oxygen-carrying and enhanced photosensitive efficiency to boost photodynamic therapy against hypoxic tumors. Acta. Biomater. 2025, 193, 406-16.

220. Zhang, X.; Lyu, Y.; Li, J.; Yang, X.; Lan, Z.; Chen, Z. Bimetallic nanozymes-integrated parachute-like Au2Pt@PMO@ICG janus nanomotor with dual propulsion for enhanced tumor penetration and synergistic PTT/PDT/CDT cancer therapy. Adv. Funct. Mater. 2024, 34, 2406059.

221. Hao, R.; Zhang, G.; Zhang, J.; Zeng, L. Ultrasmall Au/Pt-loaded biocompatible albumin nanospheres to enhance photodynamic/catalytic therapy via triple amplification of glucose-oxidase/catalase/peroxidase. J. Colloid. Interface. Sci. 2024, 654, 212-23.

222. He, M.; Cheng, Z.; Wang, Z.; et al. Controllable regulation of Ag2S quantum-dot-mediated protein nanoassemblies for imaging-guided synergistic PDT/PTT/chemotherapy against hypoxic tumor. Adv. Healthc. Mater. 2023, 12, e2300752.

223. Wang, T.; Liu, T.; Li, Z.; Wu, D.; Zhao, X.; Zeng, L. Ultrasmall gold-encapsulated mesoporous platinum to promote photodynamic/catalytic therapy through cascade enzyme-like reactions. J. Colloid. Interface. Sci. 2025, 680, 117-28.

224. Song, C.; Wu, F.; Yao, S.; et al. DNA Damage-sensitized metal phenolic nanosynergists potentiate low-power phototherapy for osteosarcoma therapy. J. Colloid. Interface. Sci. 2024, 674, 1025-36.

225. Zhen, W.; Kang, D. W.; Fan, Y.; et al. Simultaneous protonation and metalation of a porphyrin covalent organic framework enhance photodynamic therapy. J. Am. Chem. Soc. 2024, 146, 16609-18.

226. Zhang, J.; Han, X.; Chen, P.; et al. Photodynamic therapy-accelerated hypoxia-responsive prodrug release for synergistic photo-chemotherapy of melanoma cancer based on noncovalent interactions. ACS. Materials. Lett. 2025, 7, 770-9.

227. Jiang, M.; Liu, Y.; Dong, Y.; Wang, K.; Yuan, Y. Bioorthogonal chemistry and illumination controlled programmed size-changeable nanomedicine for synergistic photodynamic and hypoxia-activated therapy. Biomaterials 2022, 284, 121480.

228. Jia, Z.; Gao, Y.; Ni, J.; et al. A hybrid metal-organic framework nanomedicine-mediated photodynamic therapy and hypoxia-activated cancer chemotherapy. J. Colloid. Interface. Sci. 2023, 629, 379-90.

229. Tang, Y.; Pan, T.; Pang, E.; et al. Thienothiophene-benzopyran derivative and AQ4N-assembled liposomes for near-infrared II fluorescence imaging-guided phototherapy, chemotherapy, and immune activation. Small 2025, 21, e2407680.

230. Wang, Z.; Yang, L. Broad-spectrum prodrugs with anti-SARS-CoV-2 activities: strategies, benefits, and challenges. J. Med. Virol. 2022, 94, 1373-90.

231. Wang, Z.; Yang, L.; Song, X. Q. Oral GS-441524 derivatives: next-generation inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase. Front. Immunol. 2022, 13, 1015355.

232. Wang, X.; Zhang, M.; Cui, L.; et al. Inhibitory effect of saffron on head and neck squamous cell carcinoma via targeting of ESR1 and CCND1 by its active compound crocetin. Tradit. Med. Res. 2024, 9, 39.

233. Chen, L.; Liu, H.; Zheng, Z.; et al. MicroRNA-32-5p inhibits metastasis by directly targeting VPS4B and increases sensitivity to dihydroartemisinin in neuroblastoma. Sci. Tradit. Chin. Med. 2024, 2, 202-13.

234. Guo, T.; Zhou, H.; Chen, F.; Gu, Y.; Li, L.; Cheng, H. A review on the pathogenesis theory of cancerous toxin from the viewpoint of system theory. Sci. Tradit. Chin. Med. 2024, 2, 187-93.

235. Li, L.; Yang, L.; Cheng, S.; et al. Lung adenocarcinoma-intrinsic GBE1 signaling inhibits anti-tumor immunity. Mol. Cancer. 2019, 18, 108.

236. Dastmalchi, N.; Baradaran, B.; Banan, Khojasteh. S. M.; Hosseinpourfeizi, M.; Safaralizadeh, R. miR-424: a novel potential therapeutic target and prognostic factor in malignancies. Cell. Biol. Int. 2021, 45, 720-30.

237. Li, J.; Yi, H.; Fu, Y.; et al. Biodegradable iridium coordinated nanodrugs potentiate photodynamic therapy and immunotherapy of lung cancer. J. Colloid. Interface. Sci. 2025, 680, 9-24.

238. Shi, X.; Bao, X.; Li, Y.; Yin, C. Theanine combined with cisplatin inhibits the proliferation and metastasis of TNBC cells through Akt signaling pathway. Tradit. Med. Res. 2023, 8, 25.

239. Yang, L.; Wang, Z. Natural products, alone or in combination with FDA-approved drugs, to treat COVID-19 and lung cancer. Biomedicines 2021, 9, 689.

240. Li, Q.; Liu, X.; Yan, C.; et al. Polysaccharide-based stimulus-responsive nanomedicines for combination cancer immunotherapy. Small 2023, 19, e2206211.

241. Zhang, Y.; Zhou, J.; Chen, X.; et al. Modulating tumor-stromal crosstalk via a redox-responsive nanomedicine for combination tumor therapy. J. Control. Release. 2023, 356, 525-41.

242. Zhao, Y. D.; An, H. W.; Mamuti, M.; et al. Reprogramming hypoxic tumor-associated macrophages by nanoglycoclusters for boosted cancer immunotherapy. Adv. Mater. 2023, 35, e2211332.

243. Luo, Y. L.; Liang, L. F.; Gan, Y. J.; et al. An all-in-one nanomedicine consisting of CRISPR-Cas9 and an autoantigen peptide for restoring specific immune tolerance. ACS. Appl. Mater. Interfaces. 2020, 12, 48259-71.

244. van, Hooren. L.; Vaccaro, A.; Ramachandran, M.; et al. Agonistic CD40 therapy induces tertiary lymphoid structures but impairs responses to checkpoint blockade in glioma. Nat. Commun. 2021, 12, 4127.

245. Broos, S.; Sandin, L. C.; Apel, J.; et al. Synergistic augmentation of CD40-mediated activation of antigen-presenting cells by amphiphilic poly(γ-glutamic acid) nanoparticles. Biomaterials 2012, 33, 6230-9.

246. Correa, S.; Meany, E. L.; Gale, E. C.; et al. Injectable nanoparticle-based hydrogels enable the safe and effective deployment of immunostimulatory CD40 agonist antibodies. Adv. Sci. 2022, 9, e2103677.

247. Gaur, V.; Tyagi, W.; Das, S.; Ganguly, S.; Bhattacharyya, J. CD40 agonist engineered immunosomes modulated tumor microenvironment and showed pro-immunogenic response, reduced toxicity, and tumor free survival in mice bearing glioblastoma. Biomaterials 2024, 311, 122688.

248. Cui, Y.; Xia, H.; Liu, Q.; et al. A tumor-activatable liposomal nanoprobe for selective visualization of metastatic lymph nodes. Adv. Healthc. Mater. 2024, 13, e2401935.

249. Lee, J. S. F.; Cohen, R. M.; Khan, R. A.; et al. Paving the way for affordable and equitable liposomal amphotericin B access worldwide. Lancet. Glob. Health. 2024, 12, e1552-9.

250. Zhao, Z.; Wang, W.; Wang, G.; et al. Dual peptides-modified cationic liposomes for enhanced Lung cancer gene therapy by a gap junction regulating strategy. J. Nanobiotechnol. 2023, 21, 473.

251. Liu, X.; Zhao, Z.; Xu, X.; et al. Mobilizing STING pathway via a cationic liposome to enhance doxorubicin-induced antitumor immunity. Adv. Funct. Mater. 2025, 35, 2416406.

252. Wang, D.; Cao, Y.; Yang, G.; et al. Self-targeted Co-delivery of an antibiotic and a cancer-chemotherapeutic from synthetic liposomes for the treatment of infected tumors. Adv. Funct. Mater. 2023, 33, 2215153.

253. Han, K.; Cho, Y. S.; Moon, J. J. Antibiotic nanoparticles boost antitumor immunity. Nat. Biotechnol. 2024, 42, 1187-8.

254. Li, X.; Liu, W.; Yan, Z.; et al. Modulating autophagy in the tumor microenvironment with a salinomycin-loaded liposome hybrid nanovesicle system for tumor immunotherapy. Nano. Today. 2025, 61, 102644.

255. Zheng, Y.; Oz, Y.; Gu, Y.; et al. Rational design of polymeric micelles for targeted therapeutic delivery. Nano. Today. 2024, 55, 102147.

256. Chen, Z.; Kankala, R. K.; Long, L.; Xie, S.; Chen, A.; Zou, L. Current understanding of passive and active targeting nanomedicines to enhance tumor accumulation. Coordin. Chem. Rev. 2023, 481, 215051.

257. Jia, W.; Li, R.; Zou, F.; et al. Decorating delivery vehicles using hyaluronic acid oligosaccharides enables active targeting toward cancer and minimizes adverse effect of chemotherapeutics. Adv. Healthc. Mater. 2024, 13, e2402158.

258. Paula MC, Carvalho SG, Silvestre ALP, Dos Santos AM, Meneguin AB, Chorilli M. The role of hyaluronic acid in the design and functionalization of nanoparticles for the treatment of colorectal cancer. Carbohydr. Polym. 2023, 320, 121257.

259. Gao, Y.; Qiu, W.; Liang, M.; et al. Active targeting redox-responsive mannosylated prodrug nanocolloids promote tumor recognition and cell internalization for enhanced colon cancer chemotherapy. Acta. Biomater. 2022, 147, 299-313.

260. Chen, M. M.; Tang, X.; Li, J. J.; et al. Active targeting tumor therapy using host-guest drug delivery system based on biotin functionalized azocalix[4]arene. J. Control. Release. 2024, 368, 691-702.

261. Li, Y.; Dang, G.; Rizwan, Younis. M.; et al. Peptide functionalized actively targeted MoS2 nanospheres for fluorescence imaging-guided controllable pH-responsive drug delivery and collaborative chemo/photodynamic therapy. J. Colloid. Interface. Sci. 2023, 639, 302-13.

262. Lu, J.; Xu, X.; Sun, X.; Du, Y. Protein and peptide-based renal targeted drug delivery systems. J. Control. Release. 2024, 366, 65-84.

263. Li, J.; Zeng, H.; You, Y.; et al. Active targeting of orthotopic glioma using biomimetic liposomes co-loaded elemene and cabazitaxel modified by transferritin. J. Nanobiotechnology. 2021, 19, 289.

264. Lin, M.; Cai, Y.; Chen, G.; et al. A hierarchical tumor-targeting strategy for eliciting potent antitumor immunity against triple negative breast cancer. Biomaterials 2023, 296, 122067.

265. Ding, G. B.; Zhu, C.; Wang, Q.; et al. Molecularly engineered tumor acidity-responsive plant toxin gelonin for safe and efficient cancer therapy. Bioact. Mater. 2022, 18, 42-55.

266. Zhang, P.; Chen, D.; Li, L.; Sun, K. Charge reversal nano-systems for tumor therapy. J. Nanobiotechnol. 2022, 20, 31.

267. Ding, H.; Tan, P.; Fu, S.; et al. Preparation and application of pH-responsive drug delivery systems. J. Control. Release. 2022, 348, 206-38.

268. Schützmann, M. P.; Hasecke, F.; Bachmann, S.; et al. Endo-lysosomal Aβ concentration and pH trigger formation of Aβ oligomers that potently induce Tau missorting. Nat. Commun. 2021, 12, 4634.

269. Du, Y.; Yan, X.; Wu, W.; et al. Magnetic and pH dual responsive injectable magnetic zeolitic imidazole framework based colloidal gel for interventional treatment on hepatocellular carcinoma. Chem. Eng. J. 2024, 497, 154180.

270. Liu, X.; Wang, X.; Zang, D.; et al. pH-responsive oxygen self-sufficient smart nanoplatform for enhanced tumor chemotherapy and photodynamic therapy. J. Colloid. Interface. Sci. 2024, 675, 1080-90.

271. Ma, N.; Kwon, M. H.; Palanisamy, S.; et al. A novel sulfated mannan-carboxymethyl-5-fluorouracil-folic acid conjugates for targeted anticancer drug delivery. Carbohydr. Polym. 2023, 304, 120454.

272. Yang, L.; Li, H.; Luo, A.; et al. Macrophage membrane-camouflaged pH-sensitive nanoparticles for targeted therapy of oral squamous cell carcinoma. J. Nanobiotechnol. 2024, 22, 168.

273. Hou, G.; Qian, J.; Guo, M.; et al. Hydrazide-manganese coordinated multifunctional nanoplatform for potentiating immunotherapy in hepatocellular carcinoma. J. Colloid. Interface. Sci. 2022, 628, 968-83.

274. Xiao, W.; Geng, R.; Bi, D.; et al. pH/H2O2 cascade-responsive nanoparticles of lipid-like prodrugs through dynamic-covalent and coordination interactions for chemotherapy. Small 2024, 20, e2308790.

275. Hu, Q.; Xu, L.; Huang, X.; et al. Polydopamine-modified zeolite imidazole framework drug delivery system for photothermal chemotherapy of hepatocellular carcinoma. Biomacromolecules 2023, 24, 5964-76.

276. Weng, J.; Huang, Z.; Pu, X.; et al. Preparation of polyethylene glycol-polyacrylic acid block copolymer micelles with pH/hypoxic dual-responsive for tumor chemoradiotherapy. Colloids. Surf. B. Biointerfaces. 2020, 191, 110943.

277. Qu, D.; Jiao, M.; Lin, H.; et al. Anisamide-functionalized pH-responsive amphiphilic chitosan-based paclitaxel micelles for sigma-1 receptor targeted prostate cancer treatment. Carbohydr. Polym. 2020, 229, 115498.

278. Ma, J.; Fang, L.; Sun, Z.; et al. Folate-PEG-PROTAC micelles for enhancing tumor-specific targeting proteolysis in vivo. Adv. Healthc. Mater. 2024, 13, e2400109.

279. Huang, C.; Xie, T.; Liu, Y.; et al. A Sodium alginate-based multifunctional nanoplatform for synergistic chemo-immunotherapy of hepatocellular carcinoma. Adv. Mater. 2023, 35, e2301352.

280. Xu, C.; Xu, J.; Zheng, Y.; et al. Active-targeting and acid-sensitive pluronic prodrug micelles for efficiently overcoming MDR in breast cancer. J. Mater. Chem. B. 2020, 8, 2726-37.

281. Scaranti, M.; Cojocaru, E.; Banerjee, S.; Banerji, U. Exploiting the folate receptor α in oncology. Nat. Rev. Clin. Oncol. 2020, 17, 349-59.

282. Sudimack, J.; Lee, R. J. Targeted drug delivery via the folate receptor. Adv. Drug. Deliv. Rev. 2000, 41, 147-62.

283. Shakeri-zadeh, A.; Rezaeyan, A.; Sarikhani, A.; et al. Folate receptor-targeted nanoprobes for molecular imaging of cancer: friend or foe? Nano. Today. 2021, 39, 101173.

284. Sheehy, T. L.; Kwiatkowski, A. J.; Arora, K.; et al. STING-activating polymer-drug conjugates for cancer immunotherapy. ACS. Cent. Sci. 2024, 10, 1765-81.

285. Gao, P.; Ha-Duong, T.; Nicolas, J. Coarse-grained model-assisted design of polymer prodrug nanoparticles with enhanced cytotoxicity: a combined theoretical and experimental study. Angew. Chem. Int. Ed. 2024, 63, e202316056.

286. Li, Y.; Feng, S.; Dai, P.; et al. Tailored Trojan horse nanocarriers for enhanced redox-responsive drug delivery. J. Control. Release. 2022, 342, 201-9.

287. Tokura, D.; Konarita, K.; Suzuki, M.; et al. Active control of pharmacokinetics using light-responsive polymer-drug conjugates for boron neutron capture therapy. J. Control. Release. 2024, 371, 445-54.

288. Yu, J.; Ha, W.; Chen, J.; Shi, Y. pH-Responsive supramolecular hydrogels for codelivery of hydrophobic and hydrophilic anticancer drugs. RSC. Adv. 2014, 4, 58982-9.

289. Wang, X.; Hao, X.; Zhang, Y.; et al. Bioinspired adaptive microdrugs enhance the chemotherapy of malignant glioma: beyond their nanodrugs. Adv. Mater. 2024, 36, e2405165.

290. Qin, N.; Yang, S.; Gao, S.; Zhu, T. Celastrol inhibits inflammatory factors expression in glioblastoma. Tradit. Med. Res. 2024, 9, 31.

291. Wang, R.; Zhang, X.; Huang, J.; et al. Bio-fabricated nanodrugs with chemo-immunotherapy to inhibit glioma proliferation and recurrence. J. Control. Release. 2023, 354, 572-87.

292. Yan, G.; Wang, Y.; Chen, J.; et al. Advances in drug development for targeted therapies for glioblastoma. Med. Res. Rev. 2020, 40, 1950-72.

293. Cui, J.; Wang, X.; Li, J.; et al. Immune exosomes loading self-assembled nanomicelles traverse the blood-brain barrier for chemo-immunotherapy against glioblastoma. ACS. Nano. 2023, 17, 1464-84.

294. Hua, Y.; Cao, P.; Wang, W.; et al. Suit the remedy to the case: an activatable DNA damage initiator for postsurgical therapy of glioblastoma with TP53 mutations. ACS. Mater. Lett. 2024, 6, 1870-82.

295. Gao, M.; Fu, Y.; Zhou, W.; et al. EGFR activates a TAZ-driven oncogenic program in glioblastoma. Cancer. Res. 2021, 81, 3580-92.

296. Choi, S. W.; Lee, Y.; Shin, K.; et al. Mutation-specific non-canonical pathway of PTEN as a distinct therapeutic target for glioblastoma. Cell. Death. Dis. 2021, 12, 374.

297. Wu, B.; Yang, X.; Kong, N.; Liang, J.; Li, S.; Wang, H. Engineering modular peptide nanoparticles for ferroptosis-enhanced tumor immunotherapy. Angew. Chem. Int. Ed. 2025, 64, e202421703.

298. Liang, Y.; Lei, R.; Tan, J.; et al. HER2-targeting peptide drug conjugate with better penetrability for effective breast cancer therapy. BIOI 2023, 4.

299. Zhou, Y.; Li, Q.; Wu, Y.; et al. Molecularly stimuli-responsive self-assembled peptide nanoparticles for targeted imaging and therapy. ACS. Nano. 2023, 17, 8004-25.

300. Qiu, J.; Tomeh, M. A.; Jin, Y.; Zhang, B.; Zhao, X. Microfluidic formulation of anticancer peptide loaded ZIF-8 nanoparticles for the treatment of breast cancer. J. Colloid. Interface. Sci. 2023, 642, 810-9.

301. Xu, X.; Chen, M.; Lou, X.; et al. Sialic acid-modified mesoporous polydopamine induces tumor vessel normalization to enhance photodynamic therapy by inhibiting VE-cadherin internalization. Chem. Eng. J. 2021, 414, 128743.

302. Du, Y.; Liu, D.; Sun, M.; et al. Multifunctional Gd-CuS loaded UCST polymeric micelles for MR/PA imaging-guided chemo-photothermal tumor treatment. Nano. Res. 2022, 15, 2288-99.

303. Lu, Y.; Lin, B.; Chai, S.; et al. A pyroptosis-enhanced leucocyte-hitchhiking liposomal nanoplatform for potentiated immunotherapy of hepatocellular carcinoma. Mater. Today. Nano. 2024, 27, 100492.

304. Li, C.; Liu, Q.; Han, L.; et al. The eATP/P2×7R axis drives quantum dot-nanoparticle induced neutrophil recruitment in the pulmonary microcirculation. Adv. Sci. 2024, 11, e2404661.

305. Li, Y.; Liu, F.; Abdiryim, T.; Liu, X. Cyclodextrin-derived materials: from design to promising applications in water treatment. Coordin. Chem. Rev. 2024, 502, 215613.

306. Hu, X. Y.; Gao, J.; Chen, F. Y.; Guo, D. S. A host-guest drug delivery nanosystem for supramolecular chemotherapy. J. Control. Release. 2020, 324, 124-33.

307. Bai, Y.; Pan, Y.; An, N.; et al. Host-guest interactions based supramolecular complexes self-assemblies for amplified chemodynamic therapy with H2O2 elevation and GSH consumption properties. Chin. Chem. Lett. 2023, 34, 107552.

308. Li, H.; Yang, X.; Sun, M. Self-strengthened cascade-explosive nanogel using host-guest interaction strategy for synergistic tumor treatment. Chin. Chem. Lett. 2025, 36, 110651.

309. Liu, Z.; Lin, W.; Liu, Y. Macrocyclic supramolecular assemblies based on hyaluronic acid and their biological applications. Acc. Chem. Res. 2022, 55, 3417-29.

310. Mousazadeh, H.; Bonabi, E.; Zarghami, N. Stimulus-responsive drug/gene delivery system based on polyethylenimine cyclodextrin nanoparticles for potential cancer therapy. Carbohydr. Polym. 2022, 276, 118747.

311. Hu, X.; Fu, R.; Guo, D. Hypoxia-responsive host-guest drug delivery system. Acc. Mater. Res. 2023, 4, 925-38.

312. Guan, W.; Chen, J.; Liu, J.; et al. Macrocycles-assembled AIE supramolecular polymer networks. Coordin. Chem. Rev. 2024, 507, 215717.

313. Gao, P.; Wang, H.; Cheng, Y. Strategies for efficient photothermal therapy at mild temperatures: Progresses and challenges. Chin. Chem. Lett. 2022, 33, 575-86.

314. Chen, P.; Wang, X.; Zhu, C.; Guo, T.; Wang, C.; Ying, L. Targeted delivery of quinoxaline-based semiconducting polymers for tumor photothermal therapy. ACS. Appl. Mater. Interfaces. 2024, 16, 38377-86.

315. Liu, C.; Chang, Q.; Fan, X.; et al. Rational construction of CQDs-based targeted multifunctional nanoplatform for synergistic chemo-photothermal tumor therapy. J. Colloid. Interface. Sci. 2025, 677, 79-90.

316. Li, P.; Wang, D.; Hu, J.; Yang, X. The role of imaging in targeted delivery of nanomedicine for cancer therapy. Adv. Drug. Deliv. Rev. 2022, 189, 114447.

317. Sun, Q.; Zhou, Z.; Qiu, N.; Shen, Y. Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv. Mater. 2017, 29, 1606628.

318. Wang, X.; Zhang, M.; Li, Y.; Cong, H.; Yu, B.; Shen, Y. Research status of dendrimer micelles in tumor therapy for drug delivery. Small 2023, 19, e2304006.

319. Liang, G.; Cao, W.; Tang, D.; et al. Nanomedomics. ACS. Nano. 2024, 18, 10979-1024.

320. Wang, Y.; Li, H.; Niu, G.; et al. Boosting sono-immunotherapy of prostate carcinoma through amplifying domino-effect of mitochondrial oxidative stress using biodegradable cascade-targeting nanocomposites. ACS. Nano. 2024, 18, 5828-46.

321. Chiang, M. R.; Hsu, C. W.; Pan, W. C.; et al. Reprogramming dysfunctional dendritic cells by a versatile catalytic dual oxide antigen-captured nanosponge for remotely enhancing lung metastasis immunotherapy. ACS. Nano. 2025, 19, 2117-35.

322. Huynh, T. M. H.; Huang, P. X.; Wang, K. L.; et al. Reprogramming immunodeficiency in lung metastases via PD-L1 siRNA delivery and antigen capture of nanosponge-mediated dendritic cell modulation. ACS. Nano. 2025, 19, 25134-53.

323. Huang, L.; Li, Y.; Du, Y.; et al. Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy. Nat. Commun. 2019, 10, 4871.

324. Sun, H.; Yu, T.; Li, X.; et al. Second near-infrared photothermal-amplified immunotherapy using photoactivatable composite nanostimulators. J. Nanobiotechnol. 2021, 19, 433.

325. Jana, D.; He, B.; Chen, Y.; Liu, J.; Zhao, Y. A defect-engineered nanozyme for targeted NIR-II photothermal immunotherapy of cancer. Adv. Mater. 2024, 36, e2206401.

326. Tan, P.; Chen, X.; Zhang, H.; Wei, Q.; Luo, K. Artificial intelligence aids in development of nanomedicines for cancer management. Semin. Cancer. Biol. 2023, 89, 61-75.

327. Xie, H.; Jia, Y.; Liu, S. Integration of artificial intelligence in clinical laboratory medicine: advancements and challenges. Interdiscip. Med. 2024, 2, e20230056.

328. Xu, B. Redefining the future of cancer care: intelligent oncology unveiled. Intell. Oncol. 2025, 1, 31-3.

329. Zhang, C.; Yuan, Y.; Xia, Q.; et al. Machine learning-driven prediction, preparation, and evaluation of functional nanomedicines via drug-drug self-assembly. Adv. Sci. 2025, 12, e2415902.

330. Yan, X.; Yue, T.; Winkler, D. A.; et al. Converting nanotoxicity data to information using artificial intelligence and simulation. Chem. Rev. 2023, 123, 8575-637.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/