REFERENCES
1. Machala, M. L.; Chen, X.; Bunke, S. P.; et al. Life cycle comparison of industrial-scale lithium-ion battery recycling and mining supply chains. Nat. Commun. 2025, 16, 988.
2. Song, I. T.; Kang, J.; Koh, J.; et al. Thermal runaway prevention through scalable fabrication of safety reinforced layer in practical Li-ion batteries. Nat. Commun. 2024, 15, 8294.
3. Duan, J.; Tang, X.; Dai, H.; et al. Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energ. Rev. 2020, 3, 1-42.
4. Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy. 2018, 3, 267-78.
5. Eshetu, G. G.; Zhang, H.; Judez, X.; et al. Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nat. Commun. 2021, 12, 5459.
6. Kim, S.; Kim, J. S.; Miara, L.; et al. High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility. Nat. Commun. 2022, 13, 1883.
7. Xu, J.; Cai, X.; Cai, S.; et al. High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy. Environ. Mater. 2023, 6, e12450.
8. Liu, W.; Placke, T.; Chau, K. Overview of batteries and battery management for electric vehicles. Energy. Rep. 2022, 8, 4058-84.
9. Zeng, Y.; Zhang, B.; Fu, Y.; et al. Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches. Nat. Commun. 2023, 14, 3229.
10. Frith, J. T.; Lacey, M. J.; Ulissi, U. A non-academic perspective on the future of lithium-based batteries. Nat. Commun. 2023, 14, 420.
11. Zhao, S.; Guo, Z.; Yan, K.; et al. Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials. Energy. Storage. Mater. 2021, 34, 716-34.
12. Zhang, S.; Li, R.; Hu, N.; et al. Tackling realistic Li+ flux for high-energy lithium metal batteries. Nat. Commun. 2022, 13, 5431.
13. Ou, X.; Liu, T.; Zhong, W.; et al. Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy. Nat. Commun. 2022, 13, 2319.
14. Lee, B. J.; Zhao, C.; Yu, J. H.; et al. Development of high-energy non-aqueous lithium-sulfur batteries via redox-active interlayer strategy. Nat. Commun. 2022, 13, 4629.
15. Huo, H.; Jiang, M.; Bai, Y.; et al. Chemo-mechanical failure mechanisms of the silicon anode in solid-state batteries. Nat. Mater. 2024, 23, 543-51.
16. Liang, B.; Liu, Y.; Xu, Y. Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J. Power. Sources. 2014, 267, 469-90.
17. Li, Z.; Fan, H.; Zhang, Z.; et al. A 3D conducting scaffold with lithiophilic carbon nanoparticles for stable lithium metal battery anodes. J. Power. Sources. 2024, 618, 235183.
18. Long, K.; Huang, S.; Wang, H.; et al. High interfacial capacitance enabled stable lithium metal anode for practical lithium metal pouch cells. Energy. Storage. Mater. 2023, 58, 142-54.
19. Wen, Y.; He, K.; Zhu, Y.; et al. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.
20. Moon, J.; Lee, H. C.; Jung, H.; et al. Interplay between electrochemical reactions and mechanical responses in silicon-graphite anodes and its impact on degradation. Nat. Commun. 2021, 12, 2714.
21. Jia, T.; Zhong, G.; Lv, Y.; et al. Prelithiation strategies for silicon-based anode in high energy density lithium-ion battery. Green. Energy. Environ. 2023, 8, 1325-40.
22. Qian, J.; Henderson, W. A.; Xu, W.; et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362.
23. Toki, G. F. I.; Hossain, M. K.; Rehman, W. U.; Manj, R. Z. A.; Wang, L.; Yang, J. Recent progress and challenges in silicon-based anode materials for lithium-ion batteries. Ind. Chem. Mater. 2024, 2, 226-69.
24. Ye, H.; Zhang, Y.; Yin, Y. X.; Cao, F. F.; Guo, Y. G. An outlook on low-volume-change lithium metal anodes for long-life batteries. ACS. Cent. Sci. 2020, 6, 661-71.
25. Li, A. M.; Wang, Z.; Pollard, T. P.; et al. High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes. Nat. Commun. 2024, 15, 1206.
26. Foss, C. E. L.; Talkhoncheh, M. K.; Ulvestad, A.; et al. Revisiting mechanism of silicon degradation in Li-ion batteries: effect of delithiation examined by microscopy combined with ReaxFF. J. Phys. Chem. Lett. 2025, 16, 2238-44.
27. Taiwo, O. O.; Paz-garcía, J. M.; Hall, S. A.; et al. Microstructural degradation of silicon electrodes during lithiation observed via operando X-ray tomographic imaging. J. Power. Sources. 2017, 342, 904-12.
28. Baek, M.; Kim, J.; Jeong, K.; et al. Naked metallic skin for homo-epitaxial deposition in lithium metal batteries. Nat. Commun. 2023, 14, 1296.
29. Ko, S.; Obukata, T.; Shimada, T.; et al. Electrode potential influences the reversibility of lithium-metal anodes. Nat. Energy. 2022, 7, 1217-24.
30. Jiao, S.; Zheng, J.; Li, Q.; et al. Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries. Joule 2018, 2, 110-24.
31. Qi, X.; Liu, B.; Pang, J.; et al. Unveiling micro internal short circuit mechanism in a 60 Ah high-energy-density Li-ion pouch cell. Nano. Energy. 2021, 84, 105908.
32. Song, Y.; Wang, L.; Sheng, L.; et al. The significance of mitigating crosstalk in lithium-ion batteries: a review. Energy. Environ. Sci. 2023, 16, 1943-63.
33. Wu, Z.; Zhang, C.; Yuan, F.; et al. Ni-rich cathode materials for stable high-energy lithium-ion batteries. Nano. Energy. 2024, 126, 109620.
34. Cho, H.; Kim, J.; Kim, M.; An, H.; Min, K.; Park, K. A review of problems and solutions in Ni-rich cathode-based Li-ion batteries from two research aspects: Experimental studies and computational insights. J. Power. Sources. 2024, 597, 234132.
35. Ryu, H.; Namkoong, B.; Kim, J.; Belharouak, I.; Yoon, C. S.; Sun, Y. Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes. ACS. Energy. Lett. 2021, 6, 2726-34.
36. Zhao, Z.; Li, C.; Wen, Z.; et al. Cation mixing effect regulation by niobium for high voltage single-crystalline nickel-rich cathodes. Chem. Eng. J. 2023, 461, 142093.
37. Lee, G. H.; Lim, J.; Shin, J.; Hardwick, L. J.; Yang, W. Towards commercialization of fluorinated cation-disordered rock-salt Li-ion cathodes. Front. Chem. 2023, 11, 1098460.
38. Cai, J.; Zhou, X.; Li, L.; et al. Kinetically dormant Ni-rich layered cathode during high-voltage operation. Adv. Mater. 2025, 37, e2419253.
39. Dong, X.; Yao, J.; Zhu, W.; et al. Enhanced high-voltage cycling stability of Ni-rich cathode materials via the self-assembly of Mn-rich shells. J. Mater. Chem. A. 2019, 7, 20262-73.
40. Pathak, A. D.; Cha, E.; Choi, W. Towards the commercialization of Li-S battery: from lab to industry. Energy. Storage. Mater. 2024, 72, 103711.
41. He, B.; Rao, Z.; Cheng, Z.; et al. Rationally design a sulfur cathode with solid-phase conversion mechanism for high cycle-stable Li-S batteries. Adv. Energy. Mater. 2021, 11, 2003690.
42. Wang, Z.; Li, Y.; Ji, H.; Zhou, J.; Qian, T.; Yan, C. Unity of opposites between soluble and insoluble lithium polysulfides in lithium-sulfur batteries. Adv. Mater. 2022, 34, e2203699.
43. Huang, S.; Wang, Y.; Hu, J.; et al. Mechanism investigation of high-performance Li-polysulfide batteries enabled by tungsten disulfide nanopetals. ACS. Nano. 2018, 12, 9504-12.
44. Zhang, Y.; Song, H. W.; Crompton, K. R.; Yang, X.; Zhao, K.; Lee, S. A sulfur cathode design strategy for polysulfide restrictions and kinetic enhancements in Li-S batteries through oxidative chemical vapor deposition. Nano. Energy. 2023, 115, 108756.
45. Gao, X.; Yu, Z.; Wang, J.; et al. Electrolytes with moderate lithium polysulfide solubility for high-performance long-calendar-life lithium-sulfur batteries. Proc. Natl. Acad. Sci. USA. 2023, 120, e2301260120.
46. Kim, S. C.; Gao, X.; Liao, S. L.; et al. Solvation-property relationship of lithium-sulphur battery electrolytes. Nat. Commun. 2024, 15, 1268.
47. Zhang, Y.; Wen, J.; Yin, X.; Zhang, X. Application of anticorrosive materials in cement slurry: Progress and prospect. Front. Mater. 2022, 9, 1110692.
48. Pei, F.; Wu, L.; Lin, W.; et al. Progress and perspectives on molecular design of crosslinked polymer electrolytes for solid-state lithium batteries. Rev. Mater. Res. 2025, 1, 100013.
49. Zhang, J.; Wang, Y.; Liu, Y.; Odent, J.; Takeoka, Y. Covalent design of ionogels: bridging with hydrogels and covalent adaptable networks. Polym. Chem. 2025, 16, 2327-57.
50. Li, Z.; Peng, M.; Zhou, X.; et al. In situ chemical lithiation transforms diamond-like carbon into an ultrastrong ion conductor for dendrite-free lithium-metal anodes. Adv. Mater. 2021, 33, e2100793.
51. Meunier, V.; Leal, De. Souza. M.; Morcrette, M.; Grimaud, A. Design of workflows for crosstalk detection and lifetime deviation onset in Li-ion batteries. Joule 2023, 7, 42-56.
52. Du, H.; Wang, Y.; Kang, Y.; et al. Side reactions/changes in lithium-ion batteries: mechanisms and strategies for creating safer and better batteries. Adv. Mater. 2024, 36, e2401482.
53. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303-417.
54. Adhitama, E.; Demelash, F.; Brake, T.; et al. Assessing key issues contributing to the degradation of NCM-622 || Cu cells: competition between transition metal dissolution and “dead Li” formation. Adv. Energy. Mater. 2024, 14, 2303468.
55. Hogrefe, C.; Waldmann, T.; Hölzle, M.; Wohlfahrt-mehrens, M. Direct observation of internal short circuits by lithium dendrites in cross-sectional lithium-ion in situ full cells. J. Power. Sources. 2023, 556, 232391.
56. Wang, Y.; Zhang, C.; Hu, J.; Zhang, P.; Zhang, L.; Xu, Z. Research on internal short circuit detection method for lithium-ion batteries based on battery expansion characteristics. J. Power. Sources. 2023, 587, 233673.
57. Liu, K.; Liu, Y.; Lin, D.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, eaas9820.
58. Silveri, F.; Alberghini, M.; Esnault, V.; et al. Multiscale modelling of Si based Li-ion battery anodes. J. Power. Sources. 2024, 598, 234109.
59. Chae, S.; Ko, M.; Kim, K.; Ahn, K.; Cho, J. Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 2017, 1, 47-60.
60. Zhang, S.; Liu, K.; Xie, J.; et al. An elastic cross-linked binder for silicon anodes in lithium-ion batteries with a high mass loading. ACS. Appl. Mater. Interfaces. 2023, 15, 6594-602.
61. Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357, 279-83.
62. Jang, W.; Kim, S.; Kang, Y.; Yim, T.; Kim, T. A high-performance self-healing polymer binder for Si anodes based on dynamic carbon radicals in cross-linked poly(acrylic acid). Chem. Eng. J. 2023, 469, 143949.
63. Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042-8.
64. Zhang, D.; Ouyang, Y.; Wang, Y.; et al. A gradient-distributed binder with high energy dissipation for stable silicon anode. J. Colloid. Interface. Sci. 2024, 673, 312-20.
65. Cheng, D.; Song, F.; Zeng, Y.; et al. Dynamic self-adaption supramolecular binder for silicon anodes: anhydride activation enabling practical lithium-ion battery. Adv. Funct. Mater. 2025, 2507041.
66. Cai, Y.; Liu, C.; Yu, Z.; et al. Slidable and highly ionic conductive polymer binder for high-performance Si anodes in lithium-ion batteries. Adv. Sci. 2023, 10, e2205590.
67. Kim, J.; Kim, E.; Lim, E. Y.; et al. Stress-dissipative elastic waterborne polyurethane binders for silicon anodes with high structural integrity in lithium-ion batteries. ACS. Appl. Energy. Mater. 2024, 7, 1629-39.
68. Wang, Y.; Yang, X.; Yuan, Y.; Wang, Z.; Zhang, H.; Li, X. N-rich solid electrolyte interface constructed in situ via a binder strategy for highly stable silicon anode. Adv. Funct. Mater. 2023, 33, 2301716.
69. Kozen, A. C.; Lin, C.; Zhao, O.; Lee, S. B.; Rubloff, G. W.; Noked, M. Stabilization of lithium metal anodes by hybrid artificial solid electrolyte interphase. Chem. Mater. 2017, 29, 6298-307.
70. Song, G.; Hwang, C.; Song, W. J.; et al. Breathable artificial interphase for dendrite-free and chemo-resistive lithium metal anode. Small 2022, 18, e2105724.
71. Hwang, C.; Song, W. J.; Song, G.; et al. A three-dimensional nano-web scaffold of ferroelectric beta-PVDF fibers for lithium metal plating and stripping. ACS. Appl. Mater. Interfaces. 2020, 12, 29235-41.
72. Lee, S.; Lee, Y.; Song, W.; et al. Integration of deformable matrix and lithiophilic sites for stable and stretchable lithium metal batteries. Energy. Storage. Mater. 2024, 73, 103850.
73. Cheng, Y.; Chen, J.; Chen, Y.; et al. Lithium host: advanced architecture components for lithium metal anode. Energy. Storage. Mater. 2021, 38, 276-98.
74. Zhao, Y.; Zhou, T.; Mensi, M.; Choi, J. W.; Coskun, A. Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries. Nat. Commun. 2023, 14, 299.
75. Park, S.; Kim, S.; Lee, J. A.; Ue, M.; Choi, N. S. Liquid electrolyte chemistries for solid electrolyte interphase construction on silicon and lithium-metal anodes. Chem. Sci. 2023, 14, 9996-10024.
76. Kim, K.; Ma, H.; Park, S.; Choi, N. Electrolyte-additive-driven interfacial engineering for high-capacity electrodes in lithium-ion batteries: promise and challenges. ACS. Energy. Lett. 2020, 5, 1537-53.
77. Han, D.; Song, G.; Kim, S.; Park, S. Dual-functional stacked polymer fibers for stable lithium metal batteries in carbonate-based electrolytes. Small. Struct. 2022, 3, 2200120.
78. Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy. Environ. Sci. 2016, 9, 3221-9.
79. Kang, H.; Kim, T.; Hwang, G.; et al. Stabilizing a lithium metal anode through the sustainable release of a multi-functional AgNO3 additive. Chem. Eng. J. 2024, 484, 149510.
80. Han, D. Y.; Kim, S.; Nam, S.; et al. Facile lithium densification kinetics by hyperporous/hybrid conductor for high-energy-density lithium metal batteries. Adv. Sci. 2024, 11, e2402156.
81. Jung, J. T.; Kim, J. F.; Wang, H. H.; di, Nicolo. E.; Drioli, E.; Lee, Y. M. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J. Membr. Sci. 2016, 514, 250-63.
82. Kim, M.; Kim, G.; Kim, J.; et al. New continuous process developed for synthesizing sponge-type polyimide membrane and its pore size control method via non-solvent induced phase separation (NIPS). Microporous. Mesoporous. Mater. 2017, 242, 166-72.
83. Park, N.; Park, G.; Kim, S.; Jung, W.; Park, B.; Sun, Y. Degradation mechanism of Ni-rich cathode materials: focusing on particle interior. ACS. Energy. Lett. 2022, 7, 2362-9.
84. Wen, Y.; He, Y.; Tang, Y.; et al. Mitigating fast-charging degradation in Ni-rich cathodes via enhancing kinetic-mechanical properties. J. Energy. Chem. 2025, 107, 296-304.
85. Li, X.; Liu, J.; Banis, M. N.; et al. Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy. Environ. Sci. 2014, 7, 768-78.
86. Liang, J.; Zhu, Y.; Li, X.; et al. A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries. Nat. Commun. 2023, 14, 146.
87. Chen, L.; Yang, D.; Xin, J.; et al. High dielectric sulfonyl-containing polyimide binders optimize the long-term stability and safety of NCM811 lithium-ion batteries at high voltages. Chem. Eng. J. 2025, 503, 158670.
88. Kim, J. H.; Lee, K. M.; Kim, J. W.; et al. Regulating electrostatic phenomena by cationic polymer binder for scalable high-areal-capacity Li battery electrodes. Nat. Commun. 2023, 14, 5721.
89. Kang, J.; Eom, H.; Jang, S.; et al. Bollard-anchored binder system for high-loading cathodes fabricated via dry electrode process for Li-ion batteries. Adv. Mater. 2025, 37, e2416872.
90. Song, C.; Moon, H.; Baek, K.; et al. Acid- and gas-scavenging electrolyte additive improving the electrochemical reversibility of Ni-rich cathodes in Li-ion batteries. ACS. Appl. Mater. Interfaces. 2023, 15, 22157-66.
91. Zhang, D.; Liu, M.; Ma, J.; et al. Lithium hexamethyldisilazide as electrolyte additive for efficient cycling of high-voltage non-aqueous lithium metal batteries. Nat. Commun. 2022, 13, 6966.
92. Jang, J.; Ahn, J.; Ahn, J.; et al. A fluorine-free binder with organic-inorganic crosslinked networks enabling structural stability of Ni-Rich layered cathodes in lithium-ion batteries. Adv. Funct. Mater. 2024, 34, 2410866.
93. Jeong, D.; Kwon, D.; Kim, H. J.; Shim, J. Striking a balance: exploring optimal functionalities and composition of highly adhesive and dispersing binders for high-nickel cathodes in lithium-ion batteries. Adv. Energy. Mater. 2023, 13, 2302845.
94. Vettori, K.; Schröder, S.; Ahrens, L.; et al. Chemical and structural degradation of single crystalline high-nickel cathode materials during high-voltage holds. Adv. Energy. Mater. 2025, 15, 2502148.
95. Dose, W. M.; Li, W.; Temprano, I.; et al. Onset potential for electrolyte oxidation and Ni-rich cathode degradation in lithium-ion batteries. ACS. Energy. Lett. 2022, 7, 3524-30.
96. Fan, X.; Chen, P.; Yin, X.; et al. One stone for multiple birds: a versatile cross-linked poly(dimethyl siloxane) binder boosts cycling life and rate capability of an NCM 523 cathode at 4.6 V. ACS. Appl. Mater. Interfaces. 2022, 14, 16245-57.
97. Liu, Z.; Dong, T.; Mu, P.; Zhang, H.; Liu, W.; Cui, G. Interfacial chemistry of vinylphenol-grafted PVDF binder ensuring compatible cathode interphase for lithium batteries. Chem. Eng. J. 2022, 446, 136798.
98. Fu, Y.; Wu, Z.; Yuan, Y.; et al. Switchable encapsulation of polysulfides in the transition between sulfur and lithium sulfide. Nat. Commun. 2020, 11, 845.
99. Chen, H.; Zhou, G.; Boyle, D.; et al. Electrode design with integration of high tortuosity and sulfur-philicity for high-performance lithium-sulfur battery. Matter 2020, 2, 1605-20.
100. Huang, Y.; Lin, L.; Zhang, C.; et al. Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries. Adv. Sci. 2022, 9, e2106004.
101. Fan, Y.; Niu, Z.; Zhang, F.; Zhang, R.; Zhao, Y.; Lu, G. Suppressing the shuttle effect in lithium-sulfur batteries by a UiO-66-modified polypropylene separator. ACS. Omega. 2019, 4, 10328-35.
102. Tan, J.; Matz, J.; Dong, P.; Ye, M.; Shen, J. Appreciating the role of polysulfides in lithium-sulfur batteries and regulation strategies by electrolytes engineering. Energy. Storage. Mater. 2021, 42, 645-78.
103. Lin, X.; Wen, Y.; Ma, D.; et al. A zwitterionic polymer binder Integrating multiple dynamic interactions enables high-performance lithium - sulfur batteries. Chem. Eng. J. 2025, 512, 162808.
104. Yang, M.; Shi, D.; Sun, X.; et al. Shuttle confinement of lithium polysulfides in borocarbonitride nanotubes with enhanced performance for lithium-sulfur batteries. J. Mater. Chem. A. 2020, 8, 296-304.
105. Zhou, L.; Danilov, D. L.; Eichel, R.; Notten, P. H. L. Host materials anchoring polysulfides in Li-S batteries reviewed. Adv. Energy. Mater. 2021, 11, 2001304.
106. Wang, X.; Yang, Y.; Lai, C.; et al. Dense-stacking porous conjugated polymer as reactive-type host for high-performance lithium sulfur batteries. Angew. Chem. Int. Ed. 2021, 60, 11359-69.
107. Senthil, C.; Kim, S. S.; Jung, H. Y. Flame retardant high-power Li-S flexible batteries enabled by bio-macromolecular binder integrating conformal fractions. Nat. Commun. 2022, 13, 145.
108. Dose, W. M.; Temprano, I.; Allen, J. P.; et al. Electrolyte reactivity at the charged Ni-rich cathode interface and degradation in Li-ion batteries. ACS. Appl. Mater. Interfaces. 2022, 14, 13206-22.
109. Yoo, S.; Kim, J. H.; Shin, M.; et al. Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation. Sci. Adv. 2015, 1, e1500101.
110. Tu, C.; Zhang, Z.; Qi, X.; Wang, F.; Yang, Z. Heteroelectrocatalyst MoS2@CoS2 modified separator for Li-S battery: unveiling superior polysulfides conversion and reaction kinetics. Chem. Eng. J. 2024, 499, 155915.
111. Dong, Q.; Zhao, X.; Ren, X.; et al. Dopamine-modified separator anchoring polysulfides via electrostatic interaction for enhanced Lithium-sulfur batteries. J. Energy. Storage. 2025, 106, 114855.
112. Lin, C.; Feng, P.; Wang, D.; et al. Safe, facile, and straightforward fabrication of poly(n-vinyl imidazole)/polyacrylonitrile nanofiber modified separator as efficient polysulfide barrier toward durable lithium-sulfur batteries. Adv. Funct. Mater. 2025, 35, 2411872.
113. Liu, X.; Yin, L.; Ren, D.; et al. In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nat. Commun. 2021, 12, 4235.
114. Zheng, T.; Muneeswara, M.; Bao, H.; et al. Gas evolution in Li-ion rechargeable batteries: a review on operando sensing technologies, gassing mechanisms, and emerging trends. ChemElectroChem 2024, 11, e202400065.
115. Murali, D. R.; Banihashemi, F.; Lin, J. Y. Zeolite membrane separators for fire-safe Li-ion batteries - effects of crystal shape and membrane pore structure. J. Membr. Sci. 2023, 680, 121743.
116. Zhang, X.; Sun, Q.; Zhen, C.; et al. Recent progress in flame-retardant separators for safe lithium-ion batteries. Energy. Storage. Mater. 2021, 37, 628-47.
117. Wang, K.; Wang, W.; Wang, Y.; Wang, M. Dual phase change separator combining cooling and thermal shutdown functions for Li-ion battery with enhanced safety. Chem. Eng. J. 2024, 481, 148538.
118. Zhang, Y.; Yu, L.; Zhang, X. D.; et al. A smart risk-responding polymer membrane for safer batteries. Sci. Adv. 2023, 9, eade5802.
119. Wang, H.; Yu, Z.; Kong, X.; et al. Liquid electrolyte: the nexus of practical lithium metal batteries. Joule 2022, 6, 588-616.
120. Liu, Y. K.; Zhao, C. Z.; Du, J.; Zhang, X. Q.; Chen, A. B.; Zhang, Q. Research progresses of liquid electrolytes in lithium-ion batteries. Small 2023, 19, e2205315.
121. Ren, D.; Lu, L.; Hua, R.; et al. Challenges and opportunities of practical sulfide-based all-solid-state batteries. eTransportation 2023, 18, 100272.
122. Park, J.; Bae, K. T.; Kim, D.; et al. Unraveling the limitations of solid oxide electrolytes for all-solid-state electrodes through 3D digital twin structural analysis. Nano. Energy. 2021, 79, 105456.
124. Meng, Y. S.; Srinivasan, V.; Xu, K. Designing better electrolytes. Science 2022, 378, eabq3750.
125. Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 2019, 5, 2326-52.
126. Pei, F.; Wu, L.; Zhang, Y.; et al. Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batteries. Nat. Commun. 2024, 15, 351.
127. Tang, L.; Chen, B.; Zhang, Z.; et al. Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries. Nat. Commun. 2023, 14, 2301.
128. Han, D. Y.; Han, I. K.; Kwon, J. Y.; et al. Covalently interlocked electrode-electrolyte interface for high-energy-density quasi-solid-state lithium-ion batteries. Adv. Sci. 2025, 12, e2417143.
129. Deng, K.; Qin, J.; Wang, S.; et al. Effective suppression of lithium dendrite growth using a flexible single-ion conducting polymer electrolyte. Small 2018, 14, e1801420.







