REFERENCES
1. Clemens, H.; Mayer, S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv. Eng. Mater. 2013, 15, 191-215.
2. Appel, F.; Paul, J. D. H.; Oehring, M. Gamma titanium aluminide alloys: science and technology; John Wiley & Sons, 2011.
3. Appel, F.; Brossmann, U.; Christoph, U.; et al. Recent progress in the development of gamma titanium aluminide alloys. Adv. Eng. Mater. 2000, 2, 699-720.
4. Sun, L.; Wen, K.; Li, G.; et al. High-entropy alloys in catalysis: progress, challenges, and prospects. ACS. Mater. Au. 2024, 4, 547-56.
5. Kim, Y.; Kim, S. Advances in gammalloy materials-processes-application technology: successes, dilemmas, and future. JOM 2018, 70, 553-60.
6. Xu, X.; Lin, J.; Wang, Y.; Gao, J.; Lin, Z.; Chen, G. Effect of forging on microstructure and tensile properties of Ti-45Al-(8-9)Nb-(W,B,Y) alloy. J. Alloys. Compd. 2006, 414, 175-80.
7. Zhang, W.; Deevi, S.; Chen, G. On the origin of superior high strength of Ti-45Al-10Nb alloys. Intermetallics 2002, 10, 403-6.
8. Huang, H.; Ding, H.; Xu, X.; Chen, R.; Guo, J.; Fu, H. Phase transformation and microstructure evolution of a beta-solidified gamma-TiAl alloy. J. Alloys. Compd. 2021, 860, 158082.
9. Musi, M.; Graf, G.; Clemens, H.; Spoerk-erdely, P. Alloying elements in intermetallic γ-TiAl based alloys-a review on their influence on phase equilibria and phase transformations. Adv. Eng. Mater. 2024, 26, 2300610.
10. Appel, F.; Paul, J. D.; Staron, P.; et al. The effect of residual stresses and strain reversal on the fracture toughness of TiAl alloys. Mater. Sci. Eng. A. 2018, 709, 17-29.
11. Guo, F.; Ji, V.; François, M.; Zhang, Y. X-ray elastic constant determination and microstresses of α2 phase of a two-phase TiAl-based intermetallic alloy. Mater. Sci. Eng. A. 2003, 341, 182-8.
12. Zghal, S.; Naka, S.; Couret, A. A quantitative TEM analysis of the lamellar microstructure in TiAl based alloys. Acta. Mater. 1997, 45, 3005-15.
13. Zhu, H.; Seo, D.; Maruyama, K.; Au, P. Effect of microstructural stability on creep behavior of 47XD TiAl alloys with fine-grained fully lamellar structure. Scr. Mater. 2005, 52, 45-50.
14. Riemer, M.; Jentsch, H. G.; Biermann, H.; et al. The internal stress state in lamellar PST-crystals of the intermetallic alloy TiAl after compressive deformation. Intermetallics 1999, 7, 241-9.
15. Ma, Y.; Yang, J.; Liu, Z.; Chen, R. Deformation behavior of PST-TiAl bicrystals at 800 °C. Mater. Sci. Eng. A. 2024, 915, 147267.
16. Luo, Y.; Wang, Y.; Wang, L.; Liu, B.; Cao, Y.; Liu, Y. Effect of crystallographic texture on the anisotropy of fracture toughness in as-forged Ti-45Al-7Nb-0.4W-0.1B intermetallics. J. Alloys. Compd. 2025, 1014, 178672.
17. Cheng, L.; Zhu, B.; Yang, G.; Qiang, F.; Li, J. Insights into the abnormal flow softening of lamellar γ-TiAl alloys during hot-working: experimental analysis and numerical simulation. Mater. Sci. Eng. A. 2022, 852, 143695.
18. Inui, H.; Toda, Y.; Shirai, Y.; Yamaguchi, M. Low-temperature deformation of single crystals of a DO19 compound with an off-stoichiometric composition (Ti-36·5 at.% Al). Philos. Mag. A. 1994, 69, 1161-77.
19. Umakoshi, Y.; Nakano, T.; Takenaka, T.; Sumimoto, K.; Yamane, T. Orientation and temperature dependence of yield stress and slip geometry of Ti3Al and Ti3Al-V single crystals. Acta. Metall. Mater. 1993, 41, 1149-54.
20. Harada, S.; Yamaguchi, T.; Thirathipviwat, P.; Hasegawa, M. Lamellar orientation control of TiAl-based alloy by uniaxial compressive deformation at high-temperature in (α+β) two-phase region. J. Alloys. Compd. 2024, 1003, 175717.
21. Li, J.; Li, M.; Hu, L.; et al. Dynamic recrystallization, phase transformation and deformation mechanisms of a novel Ti-43Al-6Nb-1Mo-1Cr alloy during the isothermal deformation. Mater. Charact. 2023, 199, 112789.
22. Chen, X.; Tang, B.; Wei, B.; et al. Interaction between dynamic recrystallization and phase transformation of Ti-43Al-4Nb-1Mo-0.2B alloy during hot deformation. J. Mater. Sci. Technol. 2025, 214, 130-42.
23. Yang, J.; Wang, X.; Dong, C.; Fu, H. Thermomechanical instability and deformation behavior of βo(ω) phase region in a Ti-43Al-8Nb-0.2W-0.2B alloy under high-temperature rotary-bending fatigue. Int. J. Fatigue. 2022, 163, 106933.
24. Liu, Y.; Li, J.; Tang, B.; et al. Decomposition and phase transformation mechanisms of α2 lamellae in β-solidified γ-TiAl alloys. Acta. Mater. 2023, 242, 118492.
25. Liu, S.; Ding, H.; Chen, R.; Guo, J.; Fu, H. Evolution of rapidly grown cellular microstructure during heat treatment of TiAl-based intermetallic and its effect on micromechanical properties. Intermetallics 2021, 132, 107166.
26. Sun, T.; Liang, Y.; Yang, G.; et al. Twinning behavior and strengthening mechanism in a microalloyed TiAl alloy. Mater. Sci. Eng. A. 2023, 872, 144993.
28. Stark, A.; Bartels, A.; Clemens, H.; Schimansky, F. On the formation of ordered ω-phase in high Nb containing γ-TiAl based alloys. Adv. Eng. Mater. 2008, 10, 929-34.
29. Liang, Z.; Xiao, S.; Chi, D.; et al. Compressive creep behavior of high Nb containing TiAl alloy: dynamic recrystallization and phase transformation. Intermetallics 2023, 163, 108067.
30. Cao, G.; Russell, A.; Oertel, C.; Skrotzki, W. Microstructural evolution of TiAl-based alloys deformed by high-pressure torsion. Acta. Mater. 2015, 98, 103-12.
31. Niu, H.; Chen, X.; Chen, Y.; Zhao, S.; Liu, G.; Zhang, D. Microstructural stability, phase transformation and mechanical properties of a fully-lamellar microstructure of a Mo-modified high-Nb γ-TiAl alloy. Mater. Sci. Eng. A. 2020, 784, 139313.
32. Banerjee, D. Deformation of the O and α2 phases in the Ti-Al-Nb system. Philos. Mag. A. 1995, 72, 1559-87.
33. Gabrisch, H.; Lorenz, U.; Pyczak, F.; Rackel, M.; Stark, A. Morphology and stability of orthorhombic and hexagonal phases in a lamellar γ-Ti-42Al-8.5Nb alloy-A transmission electron microscopy study. Acta. Mater. 2017, 135, 304-13.
34. Rackel, M. W.; Stark, A.; Gabrisch, H.; Pyczak, F. Screening for O phase in advanced γ-TiAl alloys. Intermetallics 2021, 131, 107086.
35. Rackel, M. W.; Stark, A.; Gabrisch, H.; Schell, N.; Schreyer, A.; Pyczak, F. Orthorhombic phase formation in a Nb-rich γ-TiAl based alloy-an in situ synchrotron radiation investigation. Acta. Mater. 2016, 121, 343-51.
36. Dai, C.; Yang, Z.; Sun, J.; Lu, S.; Vitos, L. Composition and temperature dependence of α2 phase decomposition in high Nb-containing lamellar γ-TiAl alloys: experiments and first-principles calculations. Acta. Materialia. 2021, 221, 117419.
37. Liu, X.; Song, L.; Pyczak, F.; et al. Stress-induced orthorhombic O phase in TiAl alloys. Acta. Mater. 2025, 286, 120751.
38. Muraleedharan, K.; Nandy, T.; Banerjee, D.; Lele, S. Phase stability and ordering behaviour of the O phase in Ti Al Nb alloys. Intermetallics 1995, 3, 187-99.
39. Dye, D.; Stone, H.; Reed, R. Intergranular and interphase microstresses. Curr. Opin. Solid. State. Mater. Sci. 2001, 5, 31-7.
40. Pang, J.; Holden, T.; Wright, J.; Mason, T. The generation of intergranular strains in 309H stainless steel under uniaxial loading. Acta. Mater. 2000, 48, 1131-40.
41. Clausen, B.; Lorentzen, T.; Leffers, T. Self-consistent modelling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses. Acta. Mater. 1998, 46, 3087-98.
42. Cui, Y.; Li, C.; Zhang, C.; et al. Effect of initial microstructure on the micromechanical behavior of Ti-55531 titanium alloy investigated by in-situ high-energy X-ray diffraction. Mater. Sci. Eng. A. 2020, 772, 138806.
43. Sedmák, P.; Šittner, P.; Pilch, J.; Curfs, C. Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction. Acta. Mater. 2015, 94, 257-70.
44. Ma, L.; Wang, L.; Nie, Z.; et al. Reversible deformation-induced martensitic transformation in Al0.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron-based high-energy X-ray diffraction. Acta. Mater. 2017, 128, 12-21.
45. Young, M.; Almer, J.; Daymond, M.; Haeffner, D.; Dunand, D. Load partitioning between ferrite and cementite during elasto-plastic deformation of an ultrahigh-carbon steel. Acta. Mater. 2007, 55, 1999-2011.
46. Wang, Y. D.; Wang, X.; Stoica, A. D.; Richardson, J. W.; Lin, Peng. R. Determination of the stress orientation distribution function using pulsed neutron sources. J. Appl. Cryst. 2003, 36, 14-22.
47. Bernier, J. V.; Miller, M. P. A direct method for the determination of the mean orientation-dependent elastic strains and stresses in polycrystalline materials from strain pole figures. J. Appl. Cryst. 2006, 39, 358-68.
48. Mcnelis, K. P.; Dawson, P. R.; Miller, M. P. A two-scale methodology for determining the residual stresses in polycrystalline solids using high energy X-ray diffraction data. J. Mech. Phys. Solids. 2013, 61, 428-49.
49. Miller, M.; Park, J.; Dawson, P.; Han, T. Measuring and modeling distributions of stress state in deforming polycrystals. Acta. Mater. 2008, 56, 3927-39.
50. Alvarez M, Buioli C, Santisteban J, Vizcaino P. Evolution of texture and intergranular stresses of αZr and minority phases in Zr-2.5Nb pressure tube through synchrotron X-ray diffraction. Acta. Mater. 2024, 271, 119802.
51. Wang, Y. D.; Peng, R. L.; Zeng, X.; Mcgreevy, R. Stress-orientation distribution function (SODF)-description, symmetry and determination. MSF 2000, 347-9, 66-73.
52. Wang, Y.; Peng, R. L.; Mcgreevy, R. A novel method for constructing the mean field of grain-orientation-dependent residual stress. Philos. Mag. Lett. 2001, 81, 153-63.
53. Wang, Y.; Lin, Peng. R.; Wang, X.; Mcgreevy, R. Grain-orientation-dependent residual stress and the effect of annealing in cold-rolled stainless steel. Acta. Mater. 2002, 50, 1717-34.
54. Miller, M. P.; Bernier, J. V.; Park, J.; Kazimirov, A. Experimental measurement of lattice strain pole figures using synchrotron x rays. Rev. Sci. Instrum. 2005, 76, 113903.
55. Luo, S.; Khong, J. C.; Huang, S.; Yang, G.; Mi, J. Revealing in situ stress-induced short- and medium-range atomic structure evolution in a multicomponent metallic glassy alloy. Acta. Mater. 2024, 272, 119917.
56. Zhang, X.; Ma, L.; Xue, Y.; et al. Temperature dependence of micro-deformation behavior of the porous tungsten/Zr-based metallic glass composite. J. Non-Cryst. Solids. 2016, 436, 9-17.
57. Cheng, S.; Wang, Y.; Choo, H.; et al. An assessment of the contributing factors to the superior properties of a nanostructured steel using in situ high-energy X-ray diffraction. Acta. Mater. 2010, 58, 2419-29.
58. Dieter, G. E.; Bacon, D. Mechanical metallurgy; New York: McGraw-hill, 1986. https://archive.org/details/mechanicalmetall00diet/page/n11/mode/2up (accessed 2025-09-19).
59. Appel, F.; Clemens, H.; Fischer, F. Modeling concepts for intermetallic titanium aluminides. Prog. Mater. Sci. 2016, 81, 55-124.
60. Song, L.; Appel, F.; Liu, W.; Pyczak, F.; Zhang, T. {1 01} tension twins and {1 01}-{2 01}/{2 01}-{1 01} double twins in the D019 ordered hexagonal α2-Ti3Al phase. Acta. Materialia. 2023, 260, 119335.
61. Erdely, P.; Staron, P.; Maawad, E.; Schell, N.; Clemens, H.; Mayer, S. Lattice and phase strain evolution during tensile loading of an intermetallic, multi-phase γ-TiAl based alloy. Acta. Mater. 2018, 158, 193-205.
62. Ding, J.; Zhang, M.; Ye, T.; et al. Microstructure stability and micro-mechanical behavior of as-cast gamma-TiAl alloy during high-temperature low cycle fatigue. Acta. Matera. 2018, 145, 504-15.
63. Wimler, D.; Lindemann, J.; Kremmer, T.; Clemens, H.; Mayer, S. Microstructure and mechanical properties of novel TiAl alloys tailored via phase and precipitate morphology. Intermetallics 2021, 138, 107316.
64. Todai, M.; Nakano, T.; Liu, T.; et al. Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting. Addit. Manuf. 2017, 13, 61-70.
65. Liu, X.; Song, L.; Stark, A.; Pyczak, F.; Zhang, T. In-situ synchrotron high energy X-ray diffraction study on the internal strain evolution of D019-α2 phase during high-temperature compression and subsequent annealing in a TiAl alloy. J. Mater. Sci. Technol. 2023, 163, 212-22.
66. Liu, X.; Song, L.; Stark, A.; Pyczak, F.; Zhang, T. In-situ synchrotron high energy X-ray diffraction study on the deformation mechanisms of D019-α2 phase during high-temperature compression in a TiAl alloy. J. Mater. Res. Technol. 2024, 33, 5850-62.
67. Blackburn, M. J.; Jaffee, R. I.; Promisel, N. E. The Science, technology, and application of titanium: proceedings; Pergamon Press, Oxford, 1970; p 633. https://books.google.com/books/about/The_Science_Technology_and_Application_o.html?id=pV98AAAAIAAJ (accessed 2025-09-18).
68. Selvarajou, B.; Jhon, M. H.; Ramanujan, R.; Quek, S. S. Temperature dependent anisotropic mechanical behavior of TiAl based alloys. Int. J. Plast. 2022, 152, 103175.
69. Stark, A.; Bartels, A.; Clemens, H.; Kremmer, S.; Schimansky, F.; Gerling, R. Microstructure and texture formation during near conventional forging of an intermetallic Ti-45Al-5Nb alloy. Adv. Eng. Mater. 2009, 11, 976-81.
70. Stark, A.; Bartels, A.; Gerling, R.; Schimansky, F.; Clemens, H. Microstructure and texture formation during hot rolling of niobium-rich γ TiAl alloys with different carbon contents. Adv. Eng. Mater. 2006, 8, 1101-8.
71. Erdely, P.; Staron, P.; Maawad, E.; et al. Design and control of microstructure and texture by thermomechanical processing of a multi-phase TiAl alloy. Mater. Des. 2017, 131, 286-96.
72. Erdely, P.; Staron, P.; Maawad, E.; et al. Effect of hot rolling and primary annealing on the microstructure and texture of a β-stabilised γ-TiAl based alloy. Acta. Mater. 2017, 126, 145-53.
73. Jia, M.; Qiang, F.; Yu, Y.; Wang, Y.; Li, J.; Kou, H. Tailoring lamellar orientation and tensile properties of TNM alloy via extrusion. J. Mater. Res. Technol. 2024, 28, 363-70.
74. Schillinger, W.; Bartels, A.; Gerling, R.; Schimansky, F.; Clemens, H. Texture evolution of the γ- and the α/α2-phase during hot rolling of γ-TiAl based alloys. Intermetallics 2006, 14, 336-47.
75. Stark, A.; Schwaighofer, E.; Mayer, S.; et al.
76. Wagner, F.; Bozzolo, N.; Van, Landuyt. O.; Grosdidier, T. Evolution of recrystallisation texture and microstructure in low alloyed titanium sheets. Acta. Mater. 2002, 50, 1245-59.
77. Wang, Z.; Wu, S.; Kang, G.; et al. In-situ synchrotron X-ray tomography investigation of damage mechanism of an extruded magnesium alloy in uniaxial low-cycle fatigue with ratchetting. Acta. Mater. 2021, 211, 116881.
78. Li, T.; Zheng, J.; Gupta, M.; He, L.; Xia, L.; Jiang, B. Quantitative investigation on the {10-12} twinning-detwinning behavior and twinning transfer of an extruded Mg-2.8Y sheet during compression-tension loading via quasi-in-situ EBSD observation. J. Mater. Res. Technol. 2023, 26, 2957-74.
79. Banerjee, D.; Gogia, A.; Nandi, T.; Joshi, V. A new ordered orthorhombic phase in a Ti3Al Nb alloy. Acta. Metall. 1988, 36, 871-82.
81. Bendersky, L.; Boettinger, W. Phase transformations in the (Ti, Nb)3 Al section of the Ti Al Nb system-II. experimental TEM study of microstructures. Acta. Acta. Metall. Mater. 1994, 42, 2337-52.
82. Appel, F.; Oehring, M.; Paul, J. Nano-scale design of TiAl alloys based on β-phase decomposition. Adv. Eng. Mater. 2006, 8, 371-6.
83. Appel, F.; Oehring, M.; Paul, J. A novel in situ composite structure in TiAl alloys. Mater. Sci. Eng. A. 2008, 493, 232-6.
84. Appel, F.; Paul, J.; Oehring, M. Phase transformations during creep of a multiphase TiAl-based alloy with a modulated microstructure. Mater. Sci. Eng. A. 2009, 510-1, 342-9.
85. Song, L.; Xu, X.; You, L.; Liang, Y.; Lin, J. B19 phase in Ti-45Al-8.5Nb-0.2W-0.2B-0.02Y alloy. J. Alloys. Compd. 2015, 618, 305-10.
86. Musi, M.; Erdely, P.; Rashkova, B.; et al. Evidence of an orthorhombic transition phase in a Ti-44Al-3Mo (at.%) alloy using in situ synchrotron diffraction and transmission electron microscopy. Mater. Charact. 2019, 147, 398-405.
87. Bendersky, L.; Roytburd, A.; Boettinger, W. Phase transformations in the (Ti, Al)3 Nb section of the Ti Al Nb system-I. microstructural predictions based on a subgroup relation between phases. Acta. Metall. Mater. 1994, 42, 2323-35.
88. Ren, G.; Sun, J. High-resolution electron microscopy characterization of modulated structure in high Nb-containing lamellar γ-TiAl alloy. Acta. Mater. 2018, 144, 516-23.
89. Ren, G.; Dai, C.; Mei, W.; Sun, J.; Lu, S.; Vitos, L. Formation and temporal evolution of modulated structure in high Nb-containing lamellar γ-TiAl alloy. Acta. Mater. 2019, 165, 215-27.
90. Xu, S.; Reid, M.; Lin, J.; et al. The crystal structure and transformations of the omicron phase Ο in the Ti-Al-Nb system and on the ambiguity of its subvariants Ο1 and Ο2. Scr. Mater. 2022, 219, 114841.
91. Mozer, B.; Bendersky, L.; Boettinger, W.; Rowe, R. Neutron powder diffraction study of the orthorhombic Ti2AlNb phase. Scr. Metall. Mater. 1990, 24, 2363-8.
92. Gabrisch, H.; Janovská, M.; Rackel, M. W.; Pyczak, F.; Stark, A. Impact of microstructure on elastic properties in the alloy Ti-42Al-8.5Nb. J. Alloys. Compd. 2023, 932, 167578.
93. Muraleedharan, K.; Banerjee, D.; Banerjee, S.; Lele, S. The α2-to-O transformation in Ti-Al-Nb alloys. Philos. Mag. A. 1995, 71, 1011-36.
94. Wen, Y.; Wang, Y.; Bendersky, L.; Chen, L. Microstructural evolution during the α2→α2+O transformation in Ti-Al-Nb alloys: phase-field simulation and experimental validation. Acta. Mater. 2000, 48, 4125-35.
95. Wen, Y.; Wang, Y.; Chen, L. Effect of elastic interaction on the formation of a complex multi-domain microstructural pattern during a coherent hexagonal to orthorhombic transformation. Acta. Mater. 1999, 47, 4375-86.
96. Feng, B.; Kong, X.; Hao, S.; et al. In-situ synchrotron high energy X-ray diffraction study of micro-mechanical behaviour of R phase reorientation in nanocrystalline NiTi alloy. Acta. Mater. 2020, 194, 565-76.
97. Xu, K.; Luo, J.; Li, C.; et al. Mechanisms of stress-induced martensitic transformation and transformation-induced plasticity in NiTi shape memory alloy related to superelastic stability. Scr. Mater. 2022, 217, 114775.
98. Grabec, T.; Sedlák, P.; Zoubková, K.; et al. Evolution of elastic constants of the NiTi shape memory alloy during a stress-induced martensitic transformation. Acta. Mater. 2021, 208, 116718.
99. Tyc, O.; Iaparova, E.; Molnárová, O.; Heller, L.; Šittner, P. Stress induced martensitic transformation in NiTi at elevated temperatures: Martensite variant microstructures, recoverable strains and plastic strains. Acta. Mater. 2024, 279, 120287.
100. Chen, Y.; Klinger, M.; Duchoň, J.; Šittner, P. Modulated martensite in NiTi shape memory alloy exposed to high stress at high temperatures. Acta. Mater. 2023, 258, 119250.
101. Iaparova, E.; Heller, L.; Tyc, O.; Sittner, P. Thermally induced reorientation and plastic deformation of B19’ monoclinic martensite in nanocrystalline NiTi wires. Acta. Mater. 2023, 242, 118477.
102. Hao, S.; Cui, L.; Jiang, D.; et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength. Science 2013, 339, 1191-4.
103. Liu, J.; Wang, Y.; Hao, Y.; et al. High-energy X-ray diffuse scattering studies on deformation-induced spatially confined martensitic transformations in multifunctional Ti-24Nb-4Zr-8Sn alloy. Acta. Mater. 2014, 81, 476-86.
104. Song, Y.; Xu, S.; Sato, S.; et al. A lightweight shape-memory alloy with superior temperature-fluctuation resistance. Nature 2025, 638, 965-71.
105. Otsuka, K.; Ren, X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 2005, 50, 511-678.
106. Li, S.; Nam, T. Superelasticity and tensile strength of Ti-Zr-Nb-Sn alloys with high Zr content for biomedical applications. Intermetallics 2019, 112, 106545.
107. Fu, J.; Yamamoto, A.; Kim, H. Y.; Hosoda, H.; Miyazaki, S. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Acta. Biomater. 2015, 17, 56-67.