REFERENCES

1. Suh, D. W.; Kim, S. J. Medium Mn transformation-induced plasticity steels: recent progress and challenges. Scr. Mater. 2017, 126, 63-7.

2. Aydin, H.; Essadiqi, E.; Jung, I. H.; Yue, S. Development of 3rd generation AHSS with medium Mn content alloying compositions. Mater. Sci. Eng. A. 2013, 564, 501-8.

3. Guo, Z.; Li, L.; Yang, W.; Sun, Z. Microstructures and Mechanical properties of high-Mn TRIP steel based on warm deformation of martensite. Metall. Mater. Trans. A. 2015, 46, 1704-14.

4. He, B. B.; Huang, M. X. Strong and ductile medium Mn steel without transformation-induced plasticity effect. Mater. Rese. Lett. 2018, 6, 365-71.

5. Han, J.; Lee, S. J.; Jung, J. G.; Lee, Y. K. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel. Acta. Mater. 2014, 78, 369-77.

6. Hu, J.; Li, X.; Meng, Q.; Wang, L.; Li, Y.; Xu, W. Tailoring retained austenite and mechanical property improvement in Al-Si-V containing medium Mn steel via direct intercritical rolling. Mater. Sci. Eng. A. 2022, 855, 143904.

7. Tian, G.; Xiao, J.; Bao, Z.; Yao, S.; Yan, L.; Zhao, A. Achieving 1.5 GPa grade medium Mn steel with high ductility via interrupted intercritical annealing process. Mater. Sci. Eng. A. 2024, 905, 145943.

8. Bai, S.; Xiao, W.; Niu, W.; Li, D.; Liang, W. Microstructure and mechanical properties of a medium-Mn steel with 1.3 GPa-strength and 40%-ductility. Materials 2021, 14, 2233.

9. Chen, P.; Wang, J.; Li, X. W. Investigation of the hot-rolled medium-Mn steels with ultra-high strength and considerable ductility. J. Mater. Eng. Perform. 2025, 1-6.

10. Lan, H.; Lin, G.; Ma, Y.; Hu, B.; Du, L. Influence of intercritical annealing on microstructure, ductility, and toughness of medium Mn steels. J. Mater. Eng. Perform. 2025, 34, 14272-84.

11. Steineder, K.; Krizan, D.; Schneider, R.; Béal, C.; Sommitsch, C. On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels. Acta. Mater. 2017, 139, 39-50.

12. Heo, Y. U.; Suh, D. W.; Lee, H. C. Fabrication of an ultrafine-grained structure by a compositional pinning technique. Acta. Mater. 2014, 77, 236-47.

13. Wang, S.; Chen, W.; Zhao, Z.; Zhao, X.; Luo, X.; Wang, Q. Effect of microstructure evolution on Lüders strain and tensile properties in an intercritical annealing medium-Mn steel. J. Iron. Steel. Res. Int. 2021, 28, 762-72.

14. Ma, J.; Lu, Q.; Sun, L.; Shen, Y. Two-step intercritical annealing to eliminate Lüders band in a strong and ductile medium Mn steel. Metall. Mater. Trans. A. 2018, 49, 4404-8.

15. Emadoddin, E.; Akbarzadeh, A.; Daneshi, G. Correlation between Luder strain and retained austenite in TRIP-assisted cold rolled steel sheets. Mater. Sci. Eng. A. 2007, 447, 174-9.

16. Mao, W.; Gao, S.; Gong, W.; Harjo, S.; Kawasaki, T.; Tsuji, N. Quantitatively evaluating the huge Lüders band deformation in an ultrafine grain stainless steel by combining in situ neutron diffraction and digital image correlation analysis. Scr. Mater. 2023, 235, 115642.

17. Wang, X.; Liu, C.; He, B.; Jiang, C.; Huang, M. Microscopic strain partitioning in Lüders band of an ultrafine-grained medium Mn steel. Mater. Sci. Eng. A. 2019, 761, 138050.

18. Wang, X.; He, B.; Liu, C.; Jiang, C.; Huang, M. Extraordinary Lüders-strain-rate in medium Mn steels. Materialia 2019, 6, 100288.

19. Benzing, J. T.; Luecke, W. E.; Mates, S. P.; Ponge, D.; Raabe, D.; Wittig, J. E. Intercritical annealing to achieve a positive strain-rate sensitivity of mechanical properties and suppression of macroscopic plastic instabilities in multi-phase medium-Mn steels. Mater. Sci. Eng. A. Struct. Mater. 2021, 803, 140469.

20. Liu, R.; Hu, Z.; Lin, C.; et al. A novel design to eliminate Lüders band in medium-Mn steel and its microstructure-property relationship. Crystals 2023, 13, 936.

21. Qiu, H.; Ueji, R.; Inoue, T. Yield-point phenomenon and plastic bands in ferrite-pearlite steels. Materials 2022, 16, 195.

22. Mao, W.; Gao, S.; Gong, W.; et al. Martensitic transformation-governed Lüders deformation enables large ductility and late-stage strain hardening in ultrafine-grained austenitic stainless steel at low temperatures. Acta. Mater. 2024, 278, 120233.

23. Fu, J.; Liu, W.; Sui, H.; Cheng, Y.; Duan, H. Simulations of the localized necking and Lüders band in irradiated metals by crystal plasticity. Acta. Mech. Sin. 2023, 39, 22339.

24. Sarafanov, G. F.; Shondin, Y. G. Deformation instability in crystalline alloys: Lüders bands. Mater. Phys. Mech. 2021, 47.

25. Sun, B.; Ma, Y.; Vanderesse, N.; et al. Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite-ferrite interface. Acta. Mater. 2019, 178, 10-25.

26. Ma, Y.; Sun, B.; Schökel, A.; et al. Phase boundary segregation-induced strengthening and discontinuous yielding in ultrafine-grained duplex medium-Mn steels. Acta. Mater. 2020, 200, 389-403.

27. Liang, Z.; Cao, Z.; Lu, J.; Huang, M.; Tasan, C. Influence of co-existing medium Mn and dual phase steel microstructures on ductility and Lüders band formation. Acta. Mater. 2021, 221, 117418.

28. Luo, H.; Dong, H.; Huang, M. Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels. Mater. Des. 2015, 83, 42-8.

29. Zhang, M.; Li, R.; Ding, J.; et al. In situ high-energy X-ray diffraction mapping of Lüders band propagation in medium-Mn transformation-induced plasticity steels. Mater. Res. Lett. 2018, 6, 662-7.

30. Yan, S.; Yu, Z.; Liang, T.; et al. Unusual step-like stress flow behavior and mechanisms of a 1.3 GPa grade medium-Mn steel with 51.2% ductility. Mater. Des. 2023, 235, 112380.

31. Han, J.; Wang, J.; Manladan, S. M.; et al. Effect of Lüders bands by strain ageing on strain distribution, microstructure and texture evolution of high-strength pipe steel. Acta. Metall. Sin. 2021, 34, 657-67.

32. Ma, J.; Liu, H.; Lu, Q.; Zhong, Y.; Wang, L.; Shen, Y. Temperature-dependent macroscopic mechanical behaviors and their microscopic explanations in a medium Mn steel. Metall. Mater. Trans. A. 2020, 51, 5180-6.

33. Liu, Y.; Jiang, J.; Li, Y.; et al. Correlation of TRIP effect and Lüders band in a 2.3 GPa ultra-high yield strength medium Mn steel with martensite matrix. Mater. Sci. Eng. A. 2025, 930, 148172.

34. Wang, X.; Wang, L.; Huang, M. Kinematic and thermal characteristics of Lüders and Portevin-Le Châtelier bands in a medium Mn transformation-induced plasticity steel. Acta. Mater. 2017, 124, 17-29.

35. Liu, C.; Hu, C.; Wang, X.; Huang, M.; Jiang, C. A new perspective on Lüders band formation in medium-Mn steels based on Lüders-strain-rate and dislocation evolution. Mater. Sci. Eng. A. 2024, 901, 146553.

36. Varanasi, R. S.; Zaefferer, S.; Sun, B.; Ponge, D. Localized deformation inside the Lüders front of a medium manganese steel. Mater. Sci. Eng. A. 2021, 824, 141816.

37. Zhang, M.; Tan, Q.; Ding, J.; et al. In situ high-energy X-ray diffraction investigation of the micromechanical behavior of Fe-0.1C-10Mn-0/2Al steel at room and elevated temperatures. Mater. Sci. Eng. A. 2018, 729, 444-51.

38. Lobodyuk, V. A.; Meshkov, Y. Y.; Pereloma, E. V. On tetragonality of the martensite crystal lattice in steels. Metall. Mater. Trans. A. 2019, 50, 97-103.

39. Maruyama, N.; Yamamoto, M.; Tabata, S. Microscopic shear deformation characteristics of the Lüders front in a metastable austenitic transformation-induced-plasticity steel. ISIJ. Int. 2023, 63, 899-909.

40. Shariat, B. S.; Li, Y.; Yang, H.; Wang, Y.; Liu, Y. Shear strain evolution during tension-induced Lüders-type deformation of polycrystalline NiTi plates. Mater. Sci. Eng. A. 2022, 839, 142774.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/