REFERENCES
1. Mcadams, H.; Acklin, R.; Blake, T.; et al. A 64-Mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process. IEEE. J. Solid. State. Circuits. 2004, 39, 667-77.
2. Xie, L.; Chen, X.; Dong, Z.; et al. Nonvolatile photoelectric memory induced by interfacial charge at a ferroelectric PZT-gated black phosphorus transistor. Adv. Elect. Mater. 2019, 5, 1900458.
3. Sulzbach, M. C.; Estandía, S.; Long, X.; et al. Unraveling ferroelectric polarization and ionic contributions to electroresistance in epitaxial Hf0.5Zr0.5O2 tunnel junctions. Adv. Elect. Mater. 2020, 6, 1900852.
4. Böscke, T. S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99, 102903.
5. Wei, Y.; Nukala, P.; Salverda, M.; et al. A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nat. Mater. 2018, 17, 1095-100.
6. Guo, J.; Tao, L.; Xu, X.; et al. Rhombohedral R3 phase of Mn-doped Hf0.5Zr0.5O2 epitaxial films with robust ferroelectricity. Adv. Mater. 2024, 36, e2406038.
7. Eom, D.; Kim, H.; Lee, W.; et al. Temperature-driven co-optimization of IGZO/HZO ferroelectric field-effect transistors for optoelectronic neuromorphic computing. Nano. Energy. 2025, 138, 110837.
8. Yu, Y.; Zhang, Q.; Xu, Z.; et al. Structure-evolution-designed amorphous oxides for dielectric energy storage. Nat. Commun. 2023, 14, 3031.
9. Zhao, D.; Chen, Z.; Liao, X. Microstructural evolution and ferroelectricity in HfO2 films. Microstructures 2022, 2, 2022007.
10. Banerjee, W.; Kashir, A.; Kamba, S. Hafnium Oxide (HfO2) - A multifunctional oxide: a review on the prospect and challenges of hafnium oxide in resistive switching and ferroelectric memories. Small 2022, 18, e2107575.
11. Cao, J.; Shi, S.; Zhu, Y.; Chen, J. An overview of ferroelectric hafnia and epitaxial growth. Rap. Res. Lett. 2021, 15, 2100025.
12. Breyer, E. T.; Mulaosmanovic, H.; Mikolajick, T.; Slesazeck, S. Perspective on ferroelectric, hafnium oxide based transistors for digital beyond von-Neumann computing. Appl. Phys. Lett. 2021, 118, 050501.
13. Park, M. H.; Lee, Y. H.; Mikolajick, T.; Schroeder, U.; Hwang, C. S. Review and perspective on ferroelectric HfO2-based thin films for memory applications. MRS. Commun. 2018, 8, 795-808.
14. Schroeder, U.; Park, M. H.; Mikolajick, T.; Hwang, C. S. The fundamentals and applications of ferroelectric HfO2. Nat. Rev. Mater. 2022, 7, 653-69.
15. Ohtaka, O.; Fukui, H.; Kunisada, T.; et al. Phase relations and volume changes of hafnia under high pressure and high temperature. J. Am. Ceram. Soc. 2001, 84, 1369-73.
16. Park, M. H.; Lee, Y. H.; Kim, H. J.; et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 2015, 27, 1811-31.
17. Howard, C. J.; Kisi, E. H.; Ohtaka, O. Crystal structures of two orthorhombic Zirconias. J. Am. Ceram. Soc. 1991, 74, 2321-3.
19. Huan, T. D.; Sharma, V.; Rossetti, G. A.; Ramprasad, R. Pathways towards ferroelectricity in hafnia. Phys. Rev. B. 2014, 90, 064111.
20. Materlik, R.; Künneth, C.; Kersch, A. The origin of ferroelectricity in Hf1-xZrxO2: a computational investigation and a surface energy model. J. Appl. Phys. 2015, 117, 134109.
21. Lee, H. J.; Lee, M.; Lee, K.; et al. Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science 2020, 369, 1343-7.
22. Sang, X.; Grimley, E. D.; Schenk, T.; Schroeder, U.; Lebeau, J. M. On the structural origins of ferroelectricity in HfO2 thin films. Appl. Phys. Lett. 2015, 106, 162905.
23. Park, M. H.; Lee, Y. H.; Mikolajick, T.; Schroeder, U.; Hwang, C. S. Thermodynamic and kinetic origins of ferroelectricity in fluorite structure oxides. Adv. Elect. Mater. 2019, 5, 1800522.
24. Park, M. H.; Lee, Y. H.; Kim, H. J.; et al. Understanding the formation of the metastable ferroelectric phase in hafnia-zirconia solid solution thin films. Nanoscale 2018, 10, 716-25.
25. Fan, P.; Zhang, Y. K.; Yang, Q.; et al. Origin of the intrinsic ferroelectricity of HfO2 from ab initio molecular dynamics. J. Phys. Chem. C. 2019, 123, 21743-50.
26. Wu, Y.; Zhang, Y.; Jiang, J.; et al. Unconventional polarization-switching mechanism in (Hf,Zr)O2 ferroelectrics and its implications. Phys. Rev. Lett. 2023, 131, 226802.
27. Zhu, T.; Ma, L.; Duan, X.; Deng, S.; Liu, S. Origin of interstitial doping induced coercive field reduction in ferroelectric hafnia. Phys. Rev. Lett. 2025, 134, 056802.
28. Peng, R.; Wen, S.; Cheng, X.; Chen, L.; Liao, M.; Zhou, Y. Revealing the role of spacer layer in domain dynamics of Hf0.5Zr0.5O2 thin films for ferroelectrics. Adv. Funct. Mater. 2024, 34, 2403864.
29. Wang, S.; Li, X.; Liu, Z.; et al. Unconventional ferroelectric-ferroelastic switching mediated by non-polar phase in fluorite oxides. Adv. Mater. 2025, 37, e2415131.
30. Li, X.; Liu, Z.; Gao, A.; et al. Ferroelastically protected reversible orthorhombic to monoclinic-like phase transition in ZrO2 nanocrystals. Nat. Mater. 2024, 23, 1077-84.
31. Qi, Y.; Singh, S.; Lau, C.; et al. Stabilization of competing ferroelectric phases of HfO2 under epitaxial strain. Phys. Rev. Lett. 2020, 125, 257603.
32. Wang, Y.; Tao, L.; Guzman, R.; et al. A stable rhombohedral phase in ferroelectric Hf(Zr)1+xO2 capacitor with ultralow coercive field. Science 2023, 381, 558-63.
33. Lee, K.; Park, K.; Choi, I. H.; et al. Deterministic orientation control of ferroelectric HfO2 thin film growth by a topotactic phase transition of an oxide electrode. ACS. Nano. 2024, 18, 12707-15.
34. Wang, S.; Shen, Y.; Yang, X.; et al. Unlocking the phase evolution of the hidden non-polar to ferroelectric transition in HfO2-based bulk crystals. Nat. Commun. 2025, 16, 3745.
35. Materano, M.; Lomenzo, P. D.; Mulaosmanovic, H.; et al. Polarization switching in thin doped HfO2 ferroelectric layers. Appl. Phys. Lett. 2020, 117, 262904.
36. Xu, X.; Huang, F. T.; Qi, Y.; et al. Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2:Y. Nat. Mater. 2021, 20, 826-32.
37. Cheng, H.; Tian, H.; Liu, J. M.; Yang, Y. Structure and stability of La- and hole-doped hafnia with/without epitaxial strain. J. Phys. Condens. Matter. 2024, 36, 205401.
38. Zhang, Y.; Fan, Z.; Wang, D.; et al. Enhanced ferroelectric properties and insulator-metal transition-induced shift of polarization-voltage hysteresis loop in VOx-capped Hf0.5Zr0.5O2 thin films. ACS. Appl. Mater. Interfaces. 2020, 12, 40510-7.
39. Athle, R.; Persson, A. E. O.; Irish, A.; Menon, H.; Timm, R.; Borg, M. Effects of TiN top electrode texturing on ferroelectricity in Hf1-xZrxO2. ACS. Appl. Mater. Interfaces. 2021, 13, 11089-95.
40. Mimura, T.; Katayama, K.; Shimizu, T.; et al. Formation of (111) orientation-controlled ferroelectric orthorhombic HfO2 thin films from solid phase via annealing. Appl. Phys. Lett. 2016, 109, 052903.
41. Liu, S.; Hanrahan, B. M. Effects of growth orientations and epitaxial strains on phase stability of HfO2 thin films. Phys. Rev. Mater. 2019, 3, 054404.
42. Park, J. Y.; Lee, D. H.; Yang, K.; et al. Engineering strategies in emerging fluorite-structured ferroelectrics. ACS. Appl. Electron. Mater. 2022, 4, 1369-80.
43. Islamov, D. R.; Zalyalov, T. M.; Orlov, O. M.; Gritsenko, V. A.; Krasnikov, G. Y. Impact of oxygen vacancy on the ferroelectric properties of lanthanum-doped hafnium oxide. Appl. Phys. Lett. 2020, 117, 162901.
44. Schroeder, U.; Yurchuk, E.; Müller, J.; et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide. Jpn. J. Appl. Phys. 2014, 53, 08LE02.
45. Kirbach, S.; Lederer, M.; Eßlinger, S.; et al. Doping concentration dependent piezoelectric behavior of Si:HfO2 thin-films. Appl. Phy. Lett. 2021, 118, 012904.
46. Müller, J.; Schröder, U.; Böscke, T. S.; et al. Ferroelectricity in yttrium-doped hafnium oxide. J. Appl. Phys. 2011, 110, 114113.
47. Starschich, S.; Griesche, D.; Schneller, T.; Waser, R.; Böttger, U. Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrodes. Appl. Phy. Lett. 2014, 104, 202903.
48. Mimura, T.; Shimizu, T.; Funakubo, H. Ferroelectricity in YO1.5-HfO2 films around 1 μm in thickness. Appl. Phys. Lett. 2019, 115, 032901.
49. Yun, Y.; Buragohain, P.; Li, M.; et al. Intrinsic ferroelectricity in Y-doped HfO2 thin films. Nat. Mater. 2022, 21, 903-9.
50. Müller, J.; Böscke, T. S.; Bräuhaus, D.; et al. Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications. Appl. Phys. Lett. 2011, 99, 112901.
51. Müller, J.; Böscke, T. S.; Schröder, U.; et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano. Lett. 2012, 12, 4318-23.
52. Yan, F.; Cao, K.; Chen, Y.; Liao, J.; Liao, M.; Zhou, Y. Optimization of ferroelectricity and endurance of hafnium zirconium oxide thin films by controlling element inhomogeneity. J. Adv. Ceram. 2024, 13, 1023-31.
53. Ansari, E.; Martinolli, N.; Hartmann, E.; Varini, A.; Stolichnov, I.; Ionescu, A. M. Vanadium-doped hafnium oxide: a high-endurance ferroelectric thin film with demonstrated negative capacitance. Nano. Lett. 2025, 25, 2702-8.
54. Zhou, C.; Ma, L.; Feng, Y.; et al. Enhanced polarization switching characteristics of HfO2 ultrathin films via acceptor-donor co-doping. Nat. Commun. 2024, 15, 2893.
55. Park, M. H.; Kim, H. J.; Kim, Y. J.; Moon, T.; Hwang, C. S. The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity. Appl. Phys. Lett. 2014, 104, 1243-400.
56. Karbasian, G.; dos Reis, R.; Yadav, A. K.; Tan, A. J.; Hu, C.; Salahuddin, S. Stabilization of ferroelectric phase in tungsten capped Hf0.8Zr0.2O2. Appl. Phys. Lett. 2017, 111, 022907.
57. Onaya, T.; Nabatame, T.; Sawamoto, N.; et al. Improvement in ferroelectricity of HfxZr1-xO2 thin films using ZrO2 seed layer. Appl. Phys. Express. 2017, 10, 081501.
58. Weeks, S. L.; Pal, A.; Narasimhan, V. K.; Littau, K. A.; Chiang, T. Engineering of Ferroelectric HfO2-ZrO2 nanolaminates. ACS. Appl. Mater. Interfaces. 2017, 9, 13440-7.
59. Cao, R.; Wang, Y.; Zhao, S.; et al. Effects of capping electrode on ferroelectric properties of Hf0.5Zr0.5O2 thin films. IEEE. Electron. Device. Lett. 2018, 39, 1207-10.
60. Chen, L.; Wang, T. Y.; Dai, Y. W.; et al. Ultra-low power Hf0.5Zr0.5O2 based ferroelectric tunnel junction synapses for hardware neural network applications. Nanoscale 2018, 10, 15826-33.
61. Yoong, H. Y.; Wu, H.; Zhao, J.; et al. Epitaxial ferroelectric Hf0.5Zr0.5O2 thin films and their implementations in memristors for brain-inspired computing. Adv. Funct. Mater. 2018, 28, 1806037.
62. Bouaziz, J.; Romeo, P. R.; Baboux, N.; Vilquin, B. Huge reduction of the wake-up effect in ferroelectric HZO thin films. ACS. Appl. Electron. Mater. 2019, 1, 1740-5.
63. Estandía, S.; Dix, N.; Gazquez, J.; et al. Engineering ferroelectric Hf0.5Zr0.5O2 thin films by epitaxial stress. ACS. Appl. Electron. Mater. 2019, 1, 1449-57.
64. Goh, Y.; Cho, S. H.; Park, S. K.; Jeon, S. Crystalline phase-controlled high-quality hafnia ferroelectric with RuO2 electrode. IEEE. Trans. Electron. Devices. 2020, 67, 3431-4.
65. Goh, Y.; Cho, S. H.; Park, S. K.; Jeon, S. Oxygen vacancy control as a strategy to achieve highly reliable hafnia ferroelectrics using oxide electrode. Nanoscale 2020, 12, 9024-31.
66. Goh, Y.; Hwang, J.; Lee, Y.; Kim, M.; Jeon, S. Ultra-thin Hf0.5Zr0.5O2 thin-film-based ferroelectric tunnel junction via stress induced crystallization. Appl. Phys. Lett. 2020, 117, 242901.
67. Lyu, J.; Song, T.; Fina, I.; Sánchez, F. High polarization, endurance and retention in sub-5 nm Hf0.5Zr0.5O2 films. Nanoscale 2020, 12, 11280-7.
68. Zou, Z.; Tian, G.; Wang, D.; et al. Enhancement of ferroelectricity and homogeneity of orthorhombic phase in Hf0.5Zr0.5O2 thin films. Nanotechnology 2021, 32, 335704.
69. Kim, H.; Dae, K. S.; Oh, Y.; et al. A simple strategy to realize super stable ferroelectric capacitor via interface engineering. Adv. Materials. Inter. 2022, 9, 2102528.
70. Wang, Y.; Wang, Q.; Zhao, J.; et al. A robust high-performance electronic synapse based on epitaxial ferroelectric Hf0.5Zr0.5O2 films with uniform polarization and high Curie temperature. Appl. Mater. Today. 2022, 29, 101587.
71. Mehmood, F.; Alcala, R.; Vishnumurthy, P.; et al. Reliability improvement from La2O3 interfaces in Hf0.5Zr0.5O2-based ferroelectric capacitors. Adv. Mater. Inter. 2023, 10, 2202151.
72. Wang, T.; Mo, C.; Chou, C.; Chuang, C.; Chen, M. Impact of monolayer engineering on ferroelectricity of sub-5 nm Hf0.5Zr0.5O2 thin films. Acta. Mater. 2023, 250, 118848.
73. Cao, Y.; Liu, Y.; Yang, Y.; et al. Structural engineering of H0.5Z0.5O2-based ferroelectric tunneling junction for fast-speed and low-power artificial synapses. Adv. Elect. Mater. 2023, 9, 2201247.
74. Jia, S.; Liao, J.; Yang, Q.; et al. Developing HZO-based superlattices to enhance fatigue-resistance by charge injection suppression. Adv. Funct. Mater. 2025, 35, 2501470.
75. Hoffmann, M.; Schroeder, U.; Schenk, T.; et al. Stabilizing the ferroelectric phase in doped hafnium oxide. J. Appl. Phys. 2015, 118, 072006.
76. Kobayashi, M.; Hiramoto, T. On device design for steep-slope negative-capacitance field-effect-transistor operating at sub-0.2V supply voltage with ferroelectric HfO2 thin film. AIP. Adv. 2016, 6, 025113.
77. Park, M. H.; Kim, H. J.; Lee, G.; et al. A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices. Appl. Phys. Rev. 2019, 6, 041403.
78. Peng, Y.; Xiao, W.; Liu, Y.; et al. HfO2-ZrO2 superlattice ferroelectric capacitor with improved endurance performance and higher fatigue recovery capability. IEEE. Electron. Device. Lett. 2022, 43, 216-9.
79. Cheema, S. S.; Shanker, N.; Wang, L. C.; et al. Ultrathin ferroic HfO2-ZrO2 superlattice gate stack for advanced transistors. Nature 2022, 604, 65-71.
80. Bai, N.; Xue, K.; Huang, J.; et al. Designing wake-up free ferroelectric capacitors based on the HfO2/ZrO2 superlattice structure. Adv. Elect. Mater. 2023, 9, 2200737.
81. Gong, Z.; Chen, J.; Peng, Y.; Liu, Y.; Yu, X.; Han, G. Physical origin of the endurance improvement for HfO2-ZrO2 superlattice ferroelectric film. Appl. Phys. Lett. 2022, 121, 242901.
82. Kim, S.; Lee, S. H.; Kim, M. J.; Hwang, W. S.; Jin, H. S.; Cho, B. J. Method to achieve the morphotropic phase boundary in HfxZr1-xO2 by electric field cycling for DRAM cell capacitor applications. IEEE. Electron. Device. Lett. 2021, 42, 517-20.
83. Das, D.; Buyantogtokh, B.; Gaddam, V.; Jeon, S. Sub 5 Å-EOT HfxZr1-xO2 for next-generation DRAM capacitors using morphotropic phase boundary and high-pressure (200 atm) annealing with rapid cooling process. IEEE. Trans. Electron. Devices. 2022, 69, 103-8.
84. Kashir, A.; Hwang, H. A CMOS-compatible morphotropic phase boundary. Nanotechnology 2021, 32, 445706.
85. Kashir, A.; Hwang, H. Ferroelectric and dielectric properties of Hf0.5Zr0.5O2 thin film near morphotropic phase boundary. Phys. Status. Solidi. 2021, 218, 2000819.
86. Oh, S.; Jang, H.; Hwang, H. Composition optimization of HfxZr1-xO2 thin films to achieve the morphotrophic phase boundary for high- k dielectrics. J. Appl. Phy. 2023, 133, 154102.
87. Gaddam, V.; Kim, G.; Kim, T.; Jung, M.; Kim, C.; Jeon, S. Novel approach to high κ (~59) and low EOT (~3.8 Å) near the morphotrophic phase boundary with AFE/FE (ZrO2/HZO) bilayer heterostructures and high-pressure annealing. ACS. Appl. Mater. Interfaces. 2022, 14, 43463-73.
88. Lin, Y.; Teng, C.; Chang, S.; et al. Role of electrode-induced oxygen vacancies in regulating polarization wake-up in ferroelectric capacitors. Appl. Sur. Sci. 2020, 528, 147014.
89. Buragohain, P.; Richter, C.; Schenk, T.; et al. Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors. Appl. Phys. Lett. 2018, 112, 222901.
90. Mizutani, K.; Hoshii, T.; Wakabayashi, H.; Tsutsui, K.; Chang, E. Y.; Kakushima, K. Cerium oxide capping on Y-doped HfO2 films for ferroelectric phase stabilization with endurance improvement. Jpn. J. Appl. Phys. 2022, 61, 021006.
91. Pešić, M.; Fengler, F. P. G.; Larcher, L.; et al. Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Adv. Funct. Mater. 2016, 26, 4601-12.
92. Cheng, Y.; Gao, Z.; Ye, K. H.; et al. Reversible transition between the polar and antipolar phases and its implications for wake-up and fatigue in HfO2-based ferroelectric thin film. Nat. Commun. 2022, 13, 645.
93. Mcmitchell, S. R. C.; Clima, S.; Ronchi, N.; et al. Elucidating possible crystallographic origins of wake-up mechanisms in ferroelectric hafnia. Appl. Phys. Lett. 2021, 118, 092902.
94. Rushchanskii, K. Z.; Blügel, S.; Ležaić, M. Ordering of Oxygen Vacancies and Related Ferroelectric Properties in HfO_{2-δ}. Phys. Rev. Lett. 2021, 127, 087602.
95. Miikkulainen, V.; Leskelä, M.; Ritala, M.; Puurunen, R. L. Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends. J. Appl. Phys. 2013, 113, 021301.
96. Cheema, S. S.; Kwon, D.; Shanker, N.; et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 2020, 580, 478-82.
97. Yu, T.; He, F.; Zhao, J.; et al. Hf0.5Zr0.5O2-based ferroelectric memristor with multilevel storage potential and artificial synaptic plasticity. Sci. China. Mater. 2021, 64, 727-38.
98. Liang, Y.; Li, W.; Wang, Y.; et al. ZrO2-HfO2 superlattice ferroelectric capacitors with optimized annealing to achieve extremely high polarization stability. IEEE. Electron. Device. Lett. 2022, 43, 1451-4.
99. Lee, Y.; Alex Hsain, H.; Fields, S. S.; et al. Unexpectedly large remanent polarization of Hf0.5Zr0.5O2 metal-ferroelectric-metal capacitor fabricated without breaking vacuum. Appl. Phys. Lett. 2021, 118, 012903.
100. Profijt, H. B.; Potts, S. E.; van de Sanden, M. C. M.; Kessels, W. M. M. Plasma-assisted atomic layer deposition: basics, opportunities, and challenges. J. Vac. Sci. Technol. A. 2011, 29, 050801.
101. Van Bui, H.; Wiggers, F. B.; Gupta, A.; et al. Initial growth, refractive index, and crystallinity of thermal and plasma-enhanced atomic layer deposition AlN films. J. Vac. Sci. Technol. A. 2015, 33, 01A111.
102. Onaya, T.; Nabatame, T.; Sawamoto, N.; et al. Ferroelectricity of HfxZr1-xO2 thin films fabricated by 300 °C low temperature process with plasma-enhanced atomic layer deposition. Microelectron. Eng. 2019, 215, 111013.
103. Ahn, Y.; Jeon, Y.; Lim, S.; et al. Effects of plasma power on ferroelectric properties of HfO2-ZrO2 nanolaminates produced by plasma enhanced atomic layer deposition. Surf. Interfaces. 2023, 37, 102669.
104. Chesnokov, Y. M.; Miakonkikh, A. V.; Rogozhin, A. E.; Rudenko, K. V.; Vasiliev, A. L. Microstructure and electrical properties of thin HfO2 deposited by plasma-enhanced atomic layer deposition. J. Mater. Sci. 2018, 53, 7214-23.
105. Onaya, T.; Nabatame, T.; Jung, Y. C.; et al. Correlation between ferroelectricity and ferroelectric orthorhombic phase of HfxZr1-xO2 thin films using synchrotron X-ray analysis. APL. Mater. 2021, 9, 031111.
106. Xiao, W.; Liu, C.; Peng, Y.; et al. Memory window and endurance improvement of Hf0.5Zr0.5O2-based FeFETs with ZrO2 seed layers characterized by fast voltage pulse measurements. Nanoscale. Res. Lett. 2019, 14, 254.
107. Chen, H.; Tang, L.; Liu, L.; et al. Significant improvement of ferroelectricity and reliability in Hf0.5Zr0.5O2 films by inserting an ultrathin Al2O3 buffer layer. Appl. Surf. Sci. 2021, 542, 148737.
108. Ryu, J.; Mahata, C.; Kim, S. Long-term and short-term plasticity of Ta2O5/HfO2 memristor for hardware neuromorphic application. J. Alloys. Compd. 2021, 850, 156675.
109. Cho, J. W.; Song, M. S.; Choi, I. H.; et al. Atomic layer deposition of epitaxial ferroelectric Hf0.5Zr0.5O2 thin films. Adv. Funct. Mater. 2024, 34, 2314396.
110. Wang, J.; Qin, M.; Zeng, M.; et al. Excellent ferroelectric properties of Hf0.5Zr0.5O2 thin films induced by Al2O3 dielectric layer. IEEE. Electron. Device. Lett. 2019, 40, 1937-40.
111. Kashir, A.; Kim, H.; Oh, S.; Hwang, H. Large remnant polarization in a wake-up free Hf0.5Zr0.5O2 ferroelectric film through bulk and interface engineering. ACS. Appl. Electron. Mater. 2021, 3, 629-38.
112. Liu, B.; Cao, Y.; Zhang, W.; Li, Y. Excellent ferroelectric Hf0.5Zr0.5O2 thin films with ultra-thin Al2O3 serving as capping layer. Appl. Phys. Lett. 2021, 119, 172902.
113. Wang, C.; Chen, H.; Wang, C.; et al. Evolution of pronounced ferroelectricity in Hf0.5Zr0.5O2 thin films scaled down to 3 nm. J. Mater. Chem. C. 2021, 9, 12759-67.
114. Kim, S.; Abbas, Y.; Jeon, Y. R.; Sokolov, A. S.; Ku, B.; Choi, C. Engineering synaptic characteristics of TaOx/HfO2 bi-layered resistive switching device. Nanotechnology 2018, 29, 415204.
115. Shiraishi, T.; Katayama, K.; Yokouchi, T.; et al. Impact of mechanical stress on ferroelectricity in (Hf0.5Zr0.5)O2 thin films. Appl. Phys. Lett. 2016, 108, 262904.
116. Sulzbach, M. C.; Estandía, S.; Gàzquez, J.; Sánchez, F.; Fina, I.; Fontcuberta, J. Blocking of conducting channels widens window for ferroelectric resistive switching in interface-engineered Hf0.5Zr0.5O2 tunnel devices. Adv. Funct. Mater. 2020, 30, 2002638.
117. Estandía, S.; Cao, T.; Mishra, R.; Fina, I.; Sánchez, F.; Gazquez, J. Insights into the atomic structure of the interface of ferroelectric Hf0.5Zr0.5O2 grown epitaxially on La2/3Sr1/3MnO3. Phys. Rev. Mater. 2021, 5, 074410.
118. Estandía, S.; Gàzquez, J.; Varela, M.; et al. Critical effect of the bottom electrode on the ferroelectricity of epitaxial Hf0.5Zr0.5O2 thin films. J. Mater. Chem. C. 2021, 9, 3486-92.
119. Shi, S.; Xi, H.; Cao, T.; et al. Interface-engineered ferroelectricity of epitaxial Hf0.5Zr0.5O2 thin films. Nat. Commun. 2023, 14, 1780.
120. Lyu, J.; Fina, I.; Solanas, R.; Fontcuberta, J.; Sánchez, F. Growth window of ferroelectric epitaxial Hf0.5Zr0.5O2 thin films. ACS. Appl. Electron. Mater. 2019, 1, 220-8.
121. Long, X.; Tan, H.; Estandía, S.; et al. Enhanced electroresistance endurance of capped Hf0. 5Zr0. 5O2 ultrathin epitaxial tunnel barriers. APL. Mater. 2022, 10, 031114.
122. Mittermeier, B.; Dörfler, A.; Horoschenkoff, A.; et al. CMOS compatible Hf0.5Zr0.5O2 ferroelectric tunnel junctions for neuromorphic devices. Adv. Intell. Syst. 2019, 1, 1900034.
123. Chen, X.; Lv, Y.; Tian, Z.; Yang, J.; Zhu, Y.; Su, L. A two-terminal binary HfO2 resistance switching random access memory for an artificial synaptic device. J. Mater. Chem. C. 2023, 11, 622-9.
124. Chen, X.; Li, H.; Tian, Z.; Zhu, Y.; Su, L. Study of resistive switching behavior in HfO2 nanocrystals synthesized via a low temperature hydrothermal method. Nanotechnology 2024, 35, 125203.
125. Jeong, D. S.; Hwang, C. S. Nonvolatile memory materials for neuromorphic intelligent machines. Adv. Mater. 2018, 30, e1704729.
126. Chanthbouala, A.; Garcia, V.; Cherifi, R. O.; et al. A ferroelectric memristor. Nat. Mater. 2012, 11, 860-4.
127. Bégon-Lours, L.; Halter, M.; Popoff, Y.; Offrein, B. J. Ferroelectric, analog resistive switching in back-end-of-line compatible TiN/HfZrO4/TiOx junctions. Rap. Res. Lett. 2021, 15, 2000524.
128. Prasad, B.; Thakare, V.; Kalitsov, A.; Zhang, Z.; Terris, B.; Ramesh, R. Large tunnel electroresistance with ultrathin Hf0.5Zr0.5O2 ferroelectric tunnel barriers. Adv. Elect. Mater. 2021, 7, 2001074.
129. Du, X.; Sun, H.; Wang, H.; Li, J.; Yin, Y.; Li, X. High-speed switching and giant electroresistance in an epitaxial Hf0.5Zr0.5O2-based ferroelectric tunnel junction memristor. ACS. Appl. Mater. Interfaces. 2022, 14, 1355-61.
130. Yang, Y.; Huang, R. Probing memristive switching in nanoionic devices. Nat. Electron. 2018, 1, 274-87.
131. Chand, U.; Huang, K.; Huang, C.; Ho, C.; Lin, C.; Tseng, T. Investigation of thermal stability and reliability of HfO2 based resistive random access memory devices with cross-bar structure. J. Appl. Phys. 2015, 117, 184105.
132. Murdoch, B. J.; Mcculloch, D. G.; Ganesan, R.; Mckenzie, D. R.; Bilek, M. M. M.; Partridge, J. G. Memristor and selector devices fabricated from HfO2-xNx. Appl. Phys. Lett. 2016, 108, 143504.
133. Zhu, Z.; Pei, Y.; Gao, C.; Wang, H.; Yan, X. A Cu/HZO/GeS/Pt memristor for neuroinspired computing. Rap. Res. Lett. 2021, 15, 2100072.
134. Matveyev, Y.; Egorov, K.; Markeev, A.; Zenkevich, A. Resistive switching and synaptic properties of fully atomic layer deposition grown TiN/HfO2/TiN devices. J. Appl. Phys. 2015, 117, 044901.
135. Niu, G.; Calka, P.; Auf, der. Maur. M.; et al. Geometric conductive filament confinement by nanotips for resistive switching of HfO2-RRAM devices with high performance. Sci. Rep. 2016, 6, 25757.
136. Chandrasekaran, S.; Simanjuntak, F. M.; Saminathan, R.; Panda, D.; Tseng, T. Y. Improving linearity by introducing Al in HfO2 as a memristor synapse device. Nanotechnology 2019, 30, 445205.
137. Zhu, J.; Zhang, T.; Yang, Y.; Huang, R. A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 2020, 7, 011312.
138. Zeng, T.; Shi, S.; Hu, K.; et al. Approaching the ideal linearity in epitaxial crystalline-type memristor by controlling filament growth. Adv. Mater. 2024, 36, e2401021.
139. Covi, E.; Brivio, S.; Serb, A.; Prodromakis, T.; Fanciulli, M.; Spiga, S. HfO2-based memristors for neuromorphic applications. In 2016 IEEE International Symposium on Circuits and Systems (ISCAS); 2016.
140. Jiang, H.; Han, L.; Lin, P.; et al. Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor. Sci. Rep. 2016, 6, 28525.
141. Liu, C.; Zhang, C.; Cao, Y.; Wu, D.; Wang, P.; Li, A. Optimization of oxygen vacancy concentration in HfO2/HfOx bilayer-structured ultrathin memristors by atomic layer deposition and their biological synaptic behavior. J. Mater. Chem. C. 2020, 8, 12478-84.
142. Ryu, J. H.; Kim, S. Artificial synaptic characteristics of TiO2/HfO2 memristor with self-rectifying switching for brain-inspired computing. Chaos. Solitons. Fractals. 2020, 140, 110236.
143. Ismail, M.; Chand, U.; Mahata, C.; Nebhen, J.; Kim, S. Demonstration of synaptic and resistive switching characteristics in W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing. J. Mater. Sci. Technol. 2021, 96, 94-102.
144. Wang, T. Y.; Meng, J. L.; He, Z. Y.; et al. Atomic layer deposited Hf0.5Zr0.5O2-based flexible memristor with short/long-term synaptic plasticity. Nanoscale. Res. Lett. 2019, 14, 102.
145. Margolin, I.; Chouprik, A.; Mikheev, V.; Zarubin, S.; Negrov, D. Flexible HfO2-based ferroelectric memristor. Appl. Phys. Lett. 2022, 121, 102901.
146. Matveyev, Y.; Mikheev, V.; Negrov, D.; et al. Polarization-dependent electric potential distribution across nanoscale ferroelectric Hf0.5Zr0.5O2 in functional memory capacitors. Nanoscale 2019, 11, 19814-22.
147. Fan, Z.; Chen, J.; Wang, J. Ferroelectric HfO2-based materials for next-generation ferroelectric memories. J. Adv. Dielect. 2016, 06, 1630003.
148. Xiao, Z.; Yoong, H. Y.; Cao, J.; Zhao, Z.; Chen, J.; Yan, X. Controlling resistance switching performances of Hf0.5Zr0.5O2 films by substrate stress and potential in neuromorphic computing. Adv. Intell. Syst. 2022, 4, 2100244.
149. Zhu, Z.; Yang, H.; Huang, X.; et al. Improving the synaptic behavior with polar orthorhombic phase in Hf0.5Zr0.5O2 film. ACS. Appl. Electron. Mater. 2023, 5, 4682-9.
150. Zhao, Z.; Yan, X. Ferroelectric memristor based on Hf0.5Zr0.5O2 thin film combining memristive and neuromorphic functionalities. Rap. Res. Lett. 2020, 14, 2000224.
151. Huang, W.; Zhu, H.; Zhang, Y.; et al. HfO2-based ferroelectric field-effect-transistor with large memory window and good synaptic behavior. ECS. J. Solid. State. Sci. Technol. 2021, 10, 065012.
152. Tsai, S. H.; Fang, Z.; Wang, X.; et al. Stress-memorized HZO for high-performance ferroelectric field-effect memtransistor. ACS. Appl. Electron. Mater. 2022, 4, 1642-50.
153. Halter, M.; Bégon-Lours, L.; Bragaglia, V.; et al. Back-end, CMOS-compatible ferroelectric field-effect transistor for synaptic weights. ACS. Appl. Mater. Interfaces. 2020, 12, 17725-32.
154. Liang, T.; Chi, M.; Zhao, Y.; et al. High-performance artificial synapse developed by HZO on (110) NSTO. ACS. Appl. Nano. Mater. 2024, 7, 19006-13.
155. Siannas, N.; Zacharaki, C.; Tsipas, P.; et al. Electronic synapses enabled by an epitaxial SrTiO3-δ/Hf0.5Zr0.5O2 ferroelectric field-effect memristor integrated on silicon. Adv. Funct. Mater. 2024, 34, 2311767.
156. Nie, F.; Fang, H.; Wang, J.; et al. An adaptive solid-state synapse with Bi-directional relaxation for multimodal recognition and spatio-temporal learning. Adv. Mater. 2025, 37, e2412006.
157. Shen, Z.; Li, A.; Wang, Q.; et al. Full-vdW heterosynaptic memtransistor with the ferroelectric inserted functional layer and its neuromorphic applications. Adv. Funct. Mater. 2025, 35, 2412832.
158. Hu, Y.; Xu, W.; Liu, N.; et al. Artificial optoelectronic synapses based on light-controllable ferroelectric semiconductor memristor. Adv. Opt. Mater. 2024, 12, 2302887.