REFERENCES

1. Li, Y.; Peng, X.; Li, X.; et al. Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv. Mater. 2023, 35, e2300019.

2. Zhu, J.; Tie, Z.; Bi, S.; Niu, Z. Towards more sustainable aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 2024, 63, e202403712.

3. Liu, S.; Zhang, R.; Wang, C.; et al. Zinc ion batteries: bridging the gap from academia to industry for grid-scale energy storage. Angew. Chem. Int. Ed. 2024, 63, e202400045.

4. Li, H.; Li, S.; Hou, R.; et al. Recent advances in zinc-ion dehydration strategies for optimized Zn-metal batteries. Chem. Soc. Rev. 2024, 53, 7742-83.

5. Zhu, Y.; Liang, G.; Cui, X.; et al. Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy. Environ. Sci. 2024, 17, 369-85.

6. Liu, Z.; Li, G.; Xi, M.; et al. Interfacial engineering of Zn metal via a localized conjugated layer for highly reversible aqueous zinc ion battery. Angew. Chem. Int. Ed. 2024, 63, e202319091.

7. Gong, S.; Sun, K.; Yang, F.; et al. Doping of magnesium ions into polyaniline enables high-performance Zn-Mg alkaline batteries. Nano. Energy. 2025, 134, 110586.

8. Han, R.; Jiang, T.; Wang, Z.; et al. Reconfiguring Zn2+ solvation network and interfacial chemistry of Zn metal anode with molecular engineered crown ether additive. Adv. Funct. Mater. 2025, 35, 2412255.

9. Luo, J.; Xu, L.; Yang, Y.; et al. Stable zinc anode solid electrolyte interphase via inner Helmholtz plane engineering. Nat. Commun. 2024, 15, 6471.

10. Kim, Y.; Park, Y.; Kim, M.; Lee, J.; Kim, K. J.; Choi, J. W. Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries. Nat. Commun. 2022, 13, 2371.

11. Wu, L.; Li, Z.; Xiang, Y.; et al. Unraveling the charge storage mechanism of β-MnO2 in aqueous zinc electrolytes. ACS. Energy. Lett. 2024, 9, 5801-9.

12. Gao, W.; Feng, J.; Wang, S.; Wang, T.; Wang, S. Recent progresses of non-oxide manganese and vanadium cathode materials for aqueous zinc ion batteries. Microstructures 2025, 5, 2025018.

13. Yamamoto, T.; Shoji, T. Rechargeable Zn|ZnSO4|MnO2-type cells. Inorganica. Chimica. Acta. 1986, 117, L27-8.

14. Dai, Y.; Li, J.; Zhang, C.; et al. Fluorinated interphase enables reversible Zn2+ storage in aqueous ZnSO4 electrolytes. ACS. Energy. Lett. 2023, 8, 4762-7.

15. Jesudass, S. C.; Surendran, S.; Lim, Y.; et al. Realizing the electrode engineering significance through porous organic framework materials for high-capacity aqueous Zn-alkaline battery. Small 2024, 20, e2406539.

16. Zhou, S.; Meng, X.; Chen, Y.; et al. Zinc-ion anchor induced highly reversible Zn Anodes for high performance Zn-ion batteries. Angew. Chem. Int. Ed. 2024, 63, e202403050.

17. Zhang, M.; Xu, W.; Han, X.; et al. Unveiling the mechanism of the dendrite nucleation and growth in aqueous zinc ion batteries. Adv. Energy. Mater. 2024, 14, 2303737.

18. Naveed, A.; Rasheed, T.; Raza, B.; et al. Addressing thermodynamic instability of Zn anode: classical and recent advancements. Energy. Storage. Mater. 2022, 44, 206-30.

19. Li, M.; Wang, X.; Meng, J.; et al. Comprehensive understandings of hydrogen bond chemistry in aqueous batteries. Adv. Mater. 2024, 36, e2308628.

20. Yang, J.; Yang, P.; Xiao, T.; Fan, H. J. Designing single-ion conductive electrolytes for aqueous zinc batteries. Matter 2024, 7, 1928-49.

21. Wei, J.; Zhang, P.; Sun, J.; et al. Advanced electrolytes for high-performance aqueous zinc-ion batteries. Chem. Soc. Rev. 2024, 53, 10335-69.

22. He, Z.; Zhu, X.; Song, Y.; et al. Separator functionalization realizing stable zinc anode through microporous metal-organic framework with special functional group. Energy. Storage. Mater. 2025, 74, 103886.

23. Sun, Y.; Jian, Q.; Wang, T.; et al. A Janus separator towards dendrite-free and stable zinc anodes for long-duration aqueous zinc ion batteries. J. Energy. Chem. 2023, 81, 583-92.

24. Zheng, J.; Huang, Z.; Ming, F.; et al. Surface and interface engineering of Zn anodes in aqueous rechargeable Zn-ion batteries. Small 2022, 18, e2200006.

25. Ziesche, R. F.; Heenan, T. M. M.; Kumari, P.; et al. Multi-dimensional characterization of battery materials. Adv. Energy. Mater. 2023, 13, 2300103.

26. Cao, X.; Xu, W.; Zheng, D.; et al. Weak solvation effect induced optimal interfacial chemistry enables highly durable Zn anodes for aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 2024, 63, e202317302.

27. Huang, Y.; Yan, H.; Liu, W.; Kang, F. Transforming zinc-ion batteries with DTPA-Na: a synergistic SEI and CEI engineering approach for exceptional cycling stability and self-discharge inhibition. Angew. Chem. Int. Ed. 2024, 63, e202409642.

28. Zheng, J.; Archer, L. A. Crystallographically textured electrodes for rechargeable batteries: symmetry, fabrication, and characterization. Chem. Rev. 2022, 122, 14440-70.

29. Zhang, D.; Song, Z.; Miao, L.; et al. Single exposed Zn (0002) plane and sustainable Zn-oriented growth achieving highly reversible zinc metal batteries. Angew. Chem. Int. Ed. 2025, 64, e202414116.

30. Zhang, Y.; Li, Y.; Yao, S.; Ali, N.; Kong, X.; Wang, J. High-performance organic electrodes for sustainable zinc-ion batteries: Advances, challenges and perspectives. Energy. Storage. Mater. 2024, 71, 103544.

31. Wang, K.; Luo, D.; Ma, Q.; Lai, X.; He, L.; Chen, Z. Advanced in situ and operando characterization techniques for zinc-ion batteries. Energy. Technol. 2024, 12, 2400199.

32. Wang, J.; Tian, J. X.; Liu, G. X.; Shen, Z. Z.; Wen, R. In Situ insight into the interfacial dynamics in "water-in-salt" electrolyte-based aqueous zinc batteries. Small. Methods. 2023, 7, e2300392.

33. Zhang, X.; Li, J.; Liu, Y.; Lu, B.; Liang, S.; Zhou, J. Single [0001]-oriented zinc metal anode enables sustainable zinc batteries. Nat. Commun. 2024, 15, 2735.

34. Zhang, Y.; Zhang, Y.; Deng, J.; et al. In situ electrochemically-bonded self-adapting polymeric interface for durable aqueous zinc ion batteries. Adv. Funct. Mater. 2024, 34, 2310995.

35. Dai, Y.; Lu, R.; Zhang, C.; et al. Zn2+-mediated catalysis for fast-charging aqueous Zn-ion batteries. Nat. Catal. 2024, 7, 776-84.

36. Zheng, Z.; Zhong, X.; Zhang, Q.; et al. An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes. Nat. Commun. 2024, 15, 753.

37. Zhao, J.; Chen, Z.; Chen, Z.; et al. Epitaxy orientation and kinetics diagnosis for zinc electrodeposition. ACS. Nano. 2025, 19, 736-47.

38. Huang, Z.; Li, Z.; Wang, Y.; et al. Regulating Zn(002) deposition toward long cycle life for Zn metal batteries. ACS. Energy. Lett. 2023, 8, 372-80.

39. Liao, X.; Chen, S.; Chen, J.; et al. Suppressing Zn pulverization with three-dimensional inert-cation diversion dam for long-life Zn metal batteries. Proc. Natl. Acad. Sci. USA. 2024, 121, e2317796121.

40. Li, J.; Azizi, A.; Zhou, S.; et al. Hydrogel polymer electrolytes toward better zinc-ion batteries: a comprehensive review. eScience 2025, 5, 100294.

41. Yang, X.; Dong, Z.; Weng, G.; et al. Crystallographic manipulation strategies toward reversible Zn anode with orientational deposition. Adv. Energy. Mater. 2024, 14, 2401293.

42. Upreti, B. B.; Kamboj, N.; Dey, R. S. Advancing zinc anodes: strategies for enhanced performance in aqueous zinc-ion batteries. Small 2025, 21, e2408138.

43. Yu, X.; Li, Z.; Wu, X.; et al. Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 2023, 7, 1145-75.

44. Zhang, B.; Fan, H. J. Overlooked calendar issues of aqueous zinc metal batteries. Joule 2025, 9, 101802.

45. Yang, S. J.; Zhao, L. L.; Li, Z. X.; et al. Achieving stable Zn anode via artificial interfacial layers protection strategies toward aqueous Zn-ion batteries. Coordin. Chem. Rev. 2024, 517, 216044.

46. Kao, C. C.; Ye, C.; Hao, J.; Shan, J.; Li, H.; Qiao, S. Z. Suppressing hydrogen evolution via anticatalytic interfaces toward highly efficient aqueous Zn-ion batteries. ACS. Nano. 2023, 17, 3948-57.

47. Yang, F.; Yuwono, J. A.; Hao, J.; et al. Understanding H2 evolution electrochemistry to minimize solvated water impact on zinc-anode performance. Adv. Mater. 2022, 34, e2206754.

48. Ren, L.; Hu, Z.; Peng, C.; et al. Suppressing metal corrosion through identification of optimal crystallographic plane for Zn batteries. Proc. Natl. Acad. Sci. USA. 2024, 121, e2309981121.

49. Du, P.; Liu, D.; Chen, X.; et al. Research progress towards the corrosion and protection of electrodes in energy-storage batteries. Energy. Storage. Mater. 2023, 57, 371-99.

50. Chen, W.; Wang, Y.; Wang, F.; et al. Zinc chemistries of hybrid electrolytes in zinc metal batteries: from solvent structure to interfaces. Adv. Mater. 2024, 36, e2411802.

51. Du, D.; Zeng, L.; Lan, N.; et al. Understanding and mastering multiphysical fields toward dendrite-free aqueous zinc batteries. Adv. Energy. Mater. 2024, 14, 2403153.

52. Wu, Q.; Huang, J.; Zhang, J.; et al. Multifunctional cellulose nanocrystals electrolyte additive enable ultrahigh-rate and dendrite-free Zn anodes for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 2024, 63, e202319051.

53. Yan, Y.; Shu, C.; Zeng, T.; et al. Surface-preferred crystal plane growth enabled by underpotential deposited monolayer toward dendrite-free zinc anode. ACS. Nano. 2022, 16, 9150-62.

54. Chen, J.; Xiong, J.; Ye, M.; et al. Suppression of hydrogen evolution reaction by modulating the surface redox potential toward long-life zinc metal anodes. Adv. Funct. Mater. 2024, 34, 2312564.

55. Zhang, Q.; Su, Y.; Shi, Z.; Yang, X.; Sun, J. Artificial interphase layer for stabilized Zn anodes: progress and prospects. Small 2022, 18, e2203583.

56. Wang, L.; Wang, Z.; Li, H.; et al. Aminosilane molecular layer enables successive capture-diffusion-deposition of ions toward reversible zinc electrochemistry. ACS. Nano. 2023, 17, 668-77.

57. Liu, B.; Wei, C.; Zhu, Z.; et al. Regulating surface reaction kinetics through ligand field effects for fast and reversible aqueous zinc batteries. Angew. Chem. Int. Ed. 2022, 61, e202212780.

58. Wang, Y.; Wang, Z.; Pang, W. K.; et al. Solvent control of water O-H bonds for highly reversible zinc ion batteries. Nat. Commun. 2023, 14, 2720.

59. Wang, X.; Han, C.; Dou, S.; Li, W. The protective effect and its mechanism for electrolyte additives on the anode interface in aqueous zinc-based energy storage devices. Nano. Mater. Sci. 2022.

60. Liu, Z.; Wang, R.; Ma, Q.; et al. A dual-functional organic electrolyte additive with regulating suitable overpotential for building highly reversible aqueous zinc ion batteries. Adv. Funct. Mater. 2024, 34, 2214538.

61. Bu, F.; Gao, Y.; Zhao, W.; et al. Bio-inspired trace hydroxyl-rich electrolyte additives for high-rate and stable Zn-ion batteries at low temperatures. Angew. Chem. Int. Ed. 2024, 63, e202318496.

62. Guo, C.; Zhou, J.; Chen, Y.; et al. Synergistic manipulation of hydrogen evolution and zinc ion flux in metal-covalent organic frameworks for dendrite-free Zn-based aqueous batteries. Angew. Chem. Int. Ed. 2022, 61, e202210871.

63. He, P.; Huang, J. Chemical passivation stabilizes Zn anode. Adv. Mater. 2022, 34, e2109872.

64. Duan, C.; Lu, H.; Zhang, D.; et al. Uniform redistribution of Zn2+ flux induced by remodeling the solvated structure to form zincophilic interfaces via sodium alginate electrolyte additive. Chem. Eng. J. 2024, 487, 150413.

65. Dai, H.; Sun, T.; Zhou, J.; et al. Unraveling chemical origins of dendrite formation in zinc-ion batteries via in situ/operando X-ray spectroscopy and imaging. Nat. Commun. 2024, 15, 8577.

66. Han, D.; Wu, S.; Zhang, S.; et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 2020, 16, e2001736.

67. Zhao, Y.; Guo, S.; Chen, M.; et al. Tailoring grain boundary stability of zinc-titanium alloy for long-lasting aqueous zinc batteries. Nat. Commun. 2023, 14, 7080.

68. Xu, D.; Chen, B.; Ren, X.; et al. Selectively etching-off the highly reactive (002) Zn facet enables highly efficient aqueous zinc-metal batteries. Energy. Environ. Sci. 2024, 17, 642-54.

69. Ma, L.; Chen, S.; Li, N.; et al. Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 2020, 32, e1908121.

70. Xu, J.; Lv, W.; Yang, W.; et al. In situ construction of protective films on Zn metal anodes via natural protein additives enabling high-performance zinc ion batteries. ACS. Nano. 2022, 16, 11392-404.

71. He, W.; Gu, T.; Xu, X.; et al. Uniform in situ grown ZIF-L layer for suppressing hydrogen evolution and homogenizing Zn deposition in aqueous Zn-ion batteries. ACS. Appl. Mater. Interfaces. 2022, 14, 40031-42.

72. Zhao, R.; Feng, Z.; Kuang, R.; et al. UV-polymerized zincophilic ion-enhanced interfacial layer with high ion transference number for ultrastable Zn metal anodes. Carbon. Neutral. 2025, 4, e194.

73. He, W.; Zuo, S.; Xu, X.; et al. Challenges and strategies of zinc anode for aqueous zinc-ion batteries. Mater. Chem. Front. 2021, 5, 2201-17.

74. Al-abbasi, M.; Zhao, Y.; He, H.; et al. Challenges and protective strategies on zinc anode toward practical aqueous zinc-ion batteries. Carbon. Neutral. 2024, 3, 108-41.

75. Ren, H.; Li, S.; Wang, B.; et al. Mapping the design of electrolyte additive for stabilizing zinc anode in aqueous zinc ion batteries. Energy. Storage. Mater. 2024, 68, 103364.

76. Lu, J.; Wu, T.; Amine, K. State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat. Energy. 2017, 2, 201711.

77. Zhao, Y.; Feng, K.; Yu, Y. A Review on covalent organic frameworks as artificial interface layers for Li and Zn metal anodes in rechargeable batteries. Adv. Sci. 2024, 11, e2308087.

78. Desai, D.; Turney, D. E.; Anantharaman, B.; Steingart, D. A.; Banerjee, S. Morphological evolution of nanocluster aggregates and single crystals in alkaline zinc electrodeposition. J. Phys. Chem. C. 2014, 118, 8656-66.

79. Hawkins, B. E.; Turney, D. E.; Messinger, R. J.; et al. Electroactive ZnO: mechanisms, conductivity, and advances in Zn alkaline battery cycling. Adv. Energy. Mater. 2022, 12, 2103294.

80. Zheng, G.; Wang, C.; Pei, A.; et al. High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS. Energy. Lett. 2016, 1, 1247-55.

81. Wei, T.; Ren, Y.; Wang, Y.; et al. Addition of dioxane in electrolyte promotes (002)-textured zinc growth and suppressed side reactions in zinc-ion batteries. ACS. Nano. 2023, 17, 3765-75.

82. Banik, S. J.; Akolkar, R. suppressing dendritic growth during alkaline zinc electrodeposition using polyethylenimine additive. Electrochim. Acta. 2015, 179, 475-81.

83. Liu, Z.; Cui, T.; Lu, T.; Shapouri, Ghazvini. M.; Endres, F. Anion effects on the solid/ionic liquid interface and the electrodeposition of zinc. J. Phys. Chem. C. 2016, 120, 20224-31.

84. Khezri, R.; Rezaei, Motlagh. S.; Etesami, M.; et al. Stabilizing zinc anodes for different configurations of rechargeable zinc-air batteries. Chem. Eng. J. 2022, 449, 137796.

85. Wu, G.; Yang, W.; Yang, Y.; Yang, H. Dendrite-free strategies for aqueous zinc-ion batteries: structure, electrolyte, and separator. J. Electrochem. 2024, 30, 2415003.

86. Sun, M.; Wang, Z.; Jiang, J.; Wang, X.; Yu, C. Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chin. Chem. Lett. 2024, 35, 109393.

87. Li, J.; Xu, K.; Yao, J.; et al. Nanofluid channels mitigated Zn2+ concentration polarization prolonged over 30 times lifespan for reversible zinc anodes. Energy. Storage. Mater. 2024, 73, 103844.

88. Chen, C.; Long, Z.; Du, X.; et al. Interfacial ionic effects in aqueous zinc metal batteries. Energy. Storage. Mater. 2024, 71, 103571.

89. Zhao, P.; Cheng, Y.; Li, L.; et al. Revealing the structure/property relationships of semiconductor nanomaterials via transmission electron microscopy. Adv. Funct. Mater. 2025, 35, 2408935.

90. Chen, B.; Zhang, H.; Xuan, J.; Offer, G. J.; Wang, H. Seeing is believing: in situ/operando optical microscopy for probing electrochemical energy systems. Adv. Mater. Technol. 2020, 5, 2000555.

91. Tang, Y.; Li, J.; Xu, C.; Liu, M.; Xiao, B.; Wang, P. Electrode/electrolyte interfacial engineering for aqueous Zn-ion batteries. Carbon. Neutral. 2023, 2, 186-212.

92. He, M.; Shu, C.; Hu, A.; et al. Suppressing dendrite growth and side reactions on Zn metal anode via guiding interfacial anion/cation/H2O distribution by artificial multi-functional interface layer. Energy. Storage. Mater. 2022, 44, 452-60.

93. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: insights into materials design. Science 2017, 355, eaad4998.

94. Dong, D.; Zhao, C. X.; Zhang, X.; Wang, C. Aqueous electrolytes: from salt in water to water in salt and beyond. Adv. Mater. 2025, 2418700.

95. Tang, L.; Peng, H.; Kang, J.; et al. Zn-based batteries for sustainable energy storage: strategies and mechanisms. Chem. Soc. Rev. 2024, 53, 4877-925.

96. Guan, K.; Tao, L.; Yang, R.; et al. Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries. Adv. Energy. Mater. 2022, 12, 2103557.

97. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 2017, 117, 10403-73.

98. Zhao, E.; Nie, K.; Yu, X.; et al. Advanced characterization techniques in promoting mechanism understanding for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707543.

99. Wang, R. Y.; Kirk, D. W.; Zhang, G. X. Effects of deposition conditions on the morphology of zinc deposits from alkaline zincate solutions. J. Electrochem. Soc. 2006, 153, C357.

100. Chamoun, M.; Hertzberg, B. J.; Gupta, T.; et al. Hyper-dendritic nanoporous zinc foam anodes. NPG. Asia. Mater. 2015, 7, e178.

101. Liu, Z.; Guo, Z.; Fan, L.; et al. Construct robust epitaxial growth of (101) textured zinc metal anode for long life and high capacity in mild aqueous zinc-ion batteries. Adv. Mater. 2024, 36, e2305988.

102. Yuan, D.; Zhao, J.; Ren, H.; et al. Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem. Int. Ed. 2021, 60, 7213-9.

103. Panzeri, G.; Muller, D.; Accogli, A.; et al. Zinc electrodeposition from a chloride-free non-aqueous solution based on ethylene glycol and acetate salts. Electrochim. Acta. 2019, 296, 465-72.

104. Huang, K.; Huang, R. J.; Liu, S. Q.; He, Z. Electrodeposition of functional epitaxial films for electronics. J. Electrochem. 2022, 28, 2213006.

105. Sun, Q.; Du, H.; Sun, T.; et al. Sorbitol-electrolyte-additive based reversible zinc electrochemistry. J. Electrochem. 2024, 30, 2314002.

106. Zhao, R.; Wang, H.; Du, H.; et al. Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 2022, 13, 3252.

107. Badwe, N.; Chen, X.; Schreiber, D. K.; et al. Decoupling the role of stress and corrosion in the intergranular cracking of noble-metal alloys. Nat. Mater. 2018, 17, 887-93.

108. Hao, J.; Li, B.; Li, X.; et al. An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 2020, 32, e2003021.

109. Deng, C.; Xie, X.; Han, J.; Lu, B.; Liang, S.; Zhou, J. Stabilization of Zn metal anode through surface reconstruction of a cerium-based conversion film. Adv. Funct. Mater. 2021, 31, 2103227.

110. Zhao, Q.; Stalin, S.; Archer, L. A. Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 2021, 5, 1119-42.

111. Zhang, D.; Lu, J.; Pei, C.; Ni, S. Electrochemical activation, sintering, and reconstruction in energy-storage technologies: origin, development, and prospects. Adv. Energy. Mater. 2022, 12, 2103689.

112. Cheng, D.; Hong, J.; Lee, D.; Lee, S. Y.; Zheng, H. In situ TEM characterization of battery materials. Chem. Rev. 2025, 125, 1840-96.

113. Zhang, X.; Li, J.; Liu, D.; et al. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy. Environ. Sci. 2021, 14, 3120-9.

114. Guo, R.; Liu, X.; Ni, K.; et al. Non-destructive stripping electrochemistry enables long-life zinc metal batteries. Energy. Environ. Sci. 2025, 18, 2353-64.

115. Pavliček, N.; Gross, L. Generation, manipulation and characterization of molecules by atomic force microscopy. Nat. Rev. Chem. 2017, 1, BFs415700160005.

116. Kempaiah, R.; Vasudevamurthy, G.; Subramanian, A. Scanning probe microscopy based characterization of battery materials, interfaces, and processes. Nano. Energy. 2019, 65, 103925.

117. Lacey, S. D.; Wan, J.; von, Wald. Cresce. A.; et al. Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. Nano. Lett. 2015, 15, 1018-24.

118. Wang, S.; Wang, Z.; Yin, Y.; et al. A highly reversible zinc deposition for flow batteries regulated by critical concentration induced nucleation. Energy. Environ. Sci. 2021, 14, 4077-84.

119. Su, T.; Wang, K.; Chi, B.; Ren, W.; Sun, R. Stripy zinc array with preferential crystal plane for the ultra-long lifespan of zinc metal anodes for zinc ion batteries. EcoMat 2022, 4, e12219.

120. Pu, S. D.; Gong, C.; Tang, Y. T.; et al. Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes. Adv. Mater. 2022, 34, e2202552.

121. Atkins, D.; Ayerbe, E.; Benayad, A.; et al. Understanding battery interfaces by combined characterization and simulation approaches: challenges and perspectives. Adv. Energy. Mater. 2022, 12, 2102687.

122. Shadike, Z.; Zhao, E.; Zhou, Y.; et al. Advanced characterization techniques for sodium-ion battery studies. Adv. Energy. Mater. 2018, 8, 1702588.

123. Wang, Y.; Xu, X.; Yin, J.; et al. MoS2-mediated epitaxial plating of Zn metal anodes. Adv. Mater. 2023, 35, e2208171.

124. Li, H.; Guo, S.; Zhou, H. In-situ/operando characterization techniques in lithium-ion batteries and beyond. J. Energy. Chem. 2021, 59, 191-211.

125. Liu, X.; Tong, Y.; Wu, Y.; Zheng, J.; Sun, Y.; Li, H. In-depth mechanism understanding for potassium-ion batteries by electroanalytical methods and advanced in situ characterization techniques. Small. Methods. 2021, 5, e2101130.

126. Wang, X.; Zhou, H.; Chen, Z.; Meng, X. Synchrotron-based X-ray diffraction and absorption spectroscopy studies on layered LiNixMnyCozO2 cathode materials: a review. Energy. Storage. Mater. 2022, 49, 181-208.

127. Zhang, Q.; Ma, Y.; Lu, Y.; et al. Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew. Chem. Int. Ed. 2021, 60, 23357-64.

128. Su, H.; Zhou, W.; Zhou, W.; et al. In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation. Nat. Commun. 2021, 12, 6118.

129. Pishgar, S.; Gulati, S.; Strain, J. M.; Liang, Y.; Mulvehill, M. C.; Spurgeon, J. M. In situ analytical techniques for the investigation of material stability and interface dynamics in electrocatalytic and photoelectrochemical applications. Small. Methods. 2021, 5, e2100322.

130. Cheng, W.; Zhao, M.; Lai, Y.; et al. Recent advances in battery characterization using in situ XAFS, SAXS, XRD, and their combining techniques: from single scale to multiscale structure detection. Exploration 2024, 4, 20230056.

131. Qin, Y.; Li, H.; Han, C.; Mo, F.; Wang, X. Chemical welding of the electrode-electrolyte interface by Zn-metal-initiated in situ gelation for ultralong-life Zn-ion batteries. Adv. Mater. 2022, 34, e2207118.

132. Zhu, Q.; Sun, G.; Qiao, S.; et al. Selective shielding of the (002) plane enabling vertically oriented zinc plating for dendrite-free zinc anode. Adv. Mater. 2024, 36, e2308577.

133. He, X.; Cui, Y.; Qian, Y.; et al. Anion concentration gradient-assisted construction of a solid-electrolyte interphase for a stable zinc metal anode at high rates. J. Am. Chem. Soc. 2022, 144, 11168-77.

134. Yi, J.; You, E. M.; Hu, R.; et al. Surface-enhanced Raman spectroscopy: a half-century historical perspective. Chem. Soc. Rev. 2025, 54, 1453-551.

135. Lim, H.; Jun, S.; Song, Y. B.; Bae, H.; Kim, J. H.; Jung, Y. S. Operando electrochemical pressiometry probing interfacial evolution of electrodeposited thin lithium metal anodes for all-solid-state batteries. Energy. Storage. Mater. 2022, 50, 543-53.

136. Strauss, F.; Kitsche, D.; Ma, Y.; et al. Operando characterization techniques for all-solid-state lithium-ion batteries. Adv. Energy. Sustain. Res. 2021, 2, 2100004.

137. Yuan, Y.; Pu, S. D.; Pérez-Osorio, M. A.; et al. Diagnosing the electrostatic shielding mechanism for dendrite suppression in aqueous zinc batteries. Adv. Mater. 2024, 36, e2307708.

138. Zhang, M.; Hua, H.; Dai, P.; et al. Dynamically interfacial pH-buffering effect enabled by N-methylimidazole molecules as spontaneous proton pumps toward highly reversible zinc-metal anodes. Adv. Mater. 2023, 35, e2208630.

139. Zhou, J.; Xie, M.; Wu, F.; et al. Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Adv. Mater. 2022, 34, e2106897.

140. Bard, A. J.; Fan, F. R. F.; Kwak, J.; Lev, O. Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 1989, 61, 132-8.

141. Engstrom, R. C.; Pharr, C. M. Scanning electrochemical microscopy. Anal. Chem. 1989, 61, 1099A-104A.

142. Liu, T.; Hua, W.; Yuan, H.; et al. Direct in situ measurement of electrocatalytic carbon dioxide reduction properties using scanning electrochemical microscopy. J. Anal. Test. 2025, 9, 202-12.

143. Wu, J.; Yuan, C.; Li, T.; Yuan, Z.; Zhang, H.; Li, X. Dendrite-free zinc-based battery with high areal capacity via the region-induced deposition effect of Turing membrane. J. Am. Chem. Soc. 2021, 143, 13135-44.

144. Zhao, J.; Lv, Z.; Wang, S.; et al. Interphase Modulated early-stage Zn electrodeposition mechanism. Small. Methods. 2023, 7, e2300731.

145. Shao, Y.; Zhao, J.; Hu, W.; et al. Regulating interfacial ion migration via wool keratin mediated Biogel electrolyte toward robust flexible Zn-ion batteries. Small 2022, 18, e2107163.

146. Wang, H.; Lai, K.; Guo, F.; et al. Theoretical calculation guided materials design and capture mechanism for Zn-Se batteries via heteroatom-doped carbon. Carbon. Neutral. 2022, 1, 59-67.

147. Zheng, X.; Liu, Z.; Sun, J.; et al. Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities. Nat. Commun. 2023, 14, 76.

148. Zhao, K.; Fan, G.; Liu, J.; et al. Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives. J. Am. Chem. Soc. 2022, 144, 11129-37.

149. Wang, W.; Huang, G.; Wang, Y.; et al. Organic acid etching strategy for dendrite suppression in aqueous zinc-ion batteries. Adv. Energy. Mater. 2022, 12, 2102797.

150. Chen, H.; Zhang, W.; Yi, S.; et al. Zinc iso-plating/stripping: toward a practical Zn powder anode with ultra-long life over 5600 h. Energy. Environ. Sci. 2024, 17, 3146-56.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/