REFERENCES

1. Ma, D.; Ma, X.; Zhang, H.; Ma, M.; Zhang, X.; Liu, R. Evaluation of casting fluidity and filling capacity of Zr-based amorphous metal melts. J. Iron. Steel. Res. Int. 2018, 25, 1163-71.

2. Liu, G.; Guo, S.; Li, J.; Chen, K.; Fan, D. Fabrication of hard cermets by in-situ synthesis and infiltration of metal melts into WC powder compacts. JJ. Asian. Ceram. Soc. 2017, 5, 418-21.

3. Cao, G.; Wang, Z.; Zhang, L.; et al. Melt fluidity and microstructure of bulk metallic glass under different cooling conditions. J. Alloys. Compd. 2025, 1015, 178869.

4. Karri, M.; Verma, A.; Singh, J. The influence of initial microstructure on interaction behaviour of alloy 693 in borosilicate glass melt. Corros. Sci. 2025, 250, 112868.

5. Cohen, J.; Fine, M. E. Some aspects of short-range order. J. Phys. Radium. 1962, 23, 749-62.

6. Batalova, E. A.; Kamaeva, L. V.; Chtchelkatchev, N. M. The effect of short-range order on the viscosity and crystallization of Al-Mg melts. arXiv 2022, arXiv:2212.04404.

7. Behara, S. S.; Van der Ven, A. Role of short-range order on diffusion coefficients in the Li-Mg alloy. Chem. Mater. 2024, 36, 11236-45.

8. Yadav, S.; Jha, L.; Adhikari, D. Thermodynamic and structural properties of Bi-based liquid alloys. Phys. B. Condens. Matter. 2015, 475, 40-7.

9. Prasad, L.; Mikula, A. Effect of temperature on inter-metallic associations in Sb-Zn liquid alloys. J. Alloys. Compd. 2000, 299, 175-82.

10. Yu, P.; Xia, M.; Han, X.; et al. Atomic structure transition for various solidification paths of Pd40Ni40P20 at different cooling rates. Scrpta. Mater. 2022, 219, 114891.

11. Chikova, O.; Sinitsin, N.; Vyukhin, V.; Chezganov, D. Microheterogeneity and crystallization conditions of Fe-Mn melts. J. Cryst. Growth. 2019, 527, 125239.

12. Zhu, B.; Zhao, D.; Niu, Y.; Zhang, Z.; Zhao, H. The short-range ordering and atomic segregation in various phases of high-entropy alloy during the solidification process. Mater. Des. 2023, 234, 112290.

13. Khan, H.; Yerramilli, A. S.; D’oliveira, A.; Alford, T. L.; Boffito, D. C.; Patience, G. S. Experimental methods in chemical engineering: X-ray diffraction spectroscopy- XRD. Can. J. Chem. Eng. 2020, 98, 1255-66.

14. Li, B.; Brody, H. D.; Black, D. R.; Burdette, H. E.; Rau, C. Real time observation of dendritic solidification in alloys by synchrotron microradiography. J. Phys. D. Appl. Phys. 2006, 39, 4450-6.

15. Schwinger, J. On the classical radiation of accelerated electrons. Phys. Rev. 1949, 75, 1912.

16. Nowak, B.; Holland-moritz, D.; Yang, F.; et al. Partial structure factors reveal atomic dynamics in metallic alloy melts. Phys. Rev. Mater. 2017, 1, 025603.

17. Nienhuis, E. T.; Tuheen, M.; Du, J.; Mccloy, J. S. In situ pair distribution function analysis of crystallizing Fe-silicate melts. J. Mater. Sci. 2021, 56, 5637-57.

18. Zhao, Y.; Hou, X.; Bai, Y. Viscosity, structure and fragility of Ag-Si melts. Aip. Advances. 2018, 8, 085220.

19. Keen, D. A. A comparison of various commonly used correlation functions for describing total scattering. J. Appl. Crystallogr. 2001, 34, 172-7.

20. Wang, Y. D.; Zhang, Z. W.; Li, S. L. Application of synchrotron-based high-energy X-ray diffraction in materials research. Mater. China. 2017, 36, 168-74.

21. Stiehler, M. E.; Panagiotopoulos, N. T.; Keeble, D. S.; et al. The effect of Ni or Co additions on the structure of Zr60Cu30Al10 bulk metallic glass revealed by high-energy synchrotron radiation. Mater. Today. Commun. 2022, 31, 103531.

22. Egami, T.; Billinge, S. J. Underneath the Bragg peaks, structural analysis of complex materials; Elsevier: 2003; Volume 7. Available online: https://www.sciencedirect.com/bookseries/pergamon-materials-series/vol/7/suppl/C. (accessed 23 June 2025).

23. Mathiesen, R. H.; Arnberg, L.; Nguyen-thi, H.; Billia, B. In situ X-ray video microscopy as a tool in solidification science. JOM 2012, 64, 76-82.

24. Thi, H. N.; Jamgotchian, H.; Gastaldi, J.; et al. Preliminary in situ and real-time study of directional solidification of metallic alloys by X-ray imaging techniques. J. Phys. D. Appl. Phys. 2003, 36, A83.

25. Du, Z. L.; Gu, E. Y.; Wang, T. M. Metal solidification: application research based on synchrotron radiation in situ imaging technology. Spec. Cast. Nonferrous. Alloys. 2024, 10, 1319-1335.

26. Wang, M.; Williams, J.; Jiang, L.; De Carlo, F.; Jing, T.; Chawla, N. Dendritic morphology of α-Mg during the solidification of Mg-based alloys: 3D experimental characterization by X-ray synchrotron tomography and phase-field simulations. Scrpta. Mater. 2011, 65, 855-8.

27. Xuan, Z.; Mao, F.; Cao, Z.; Wang, T.; Zou, L. In situ observation on the solidification of Sn-10Cu hyperperitectic alloy under direct current field by synchrotron microradiography. J. Alloys. Compd. 2017, 721, 126-33.

28. Tang, Y.; Wu, Y.; Zhang, Y.; et al. Intermittent nucleation and periodic growth of grains under thermo-solutal convection during directional solidification of Al-Cu alloy. Acta. Mater. 2021, 212, 116861.

29. Xiang, K.; Qin, L.; Zhao, Y.; et al. Operando study of the dynamic evolution of multiple Fe-rich intermetallics of an Al recycled alloy in solidification by synchrotron X-ray and machine learning. Acta. Mater. 2024, 279, 120267.

30. Luo, S.; Khong, J. C.; Huang, S.; Yang, G.; Mi, J. Revealing in situ stress-induced short- and medium-range atomic structure evolution in a multicomponent metallic glassy alloy. Acta. Mater. 2024, 272, 119917.

31. Ashton, G. P.; Charsley, E. L.; Harding, L. P.; Parkes, G. M. B. Applications of a simultaneous differential scanning calorimetry-thermomicroscopy system. J. Therm. Anal. Calorim. 2022, 147, 1345-53.

32. Esposito, R.; Klebesz, R.; Bartoli, O.; et al. Application of the Linkam TS1400XY heating stage to melt inclusion studies. Cent. Eur. J. Geosci. 2012, 4, 208-18.

33. Jasiurkowska-Delaporte, M.; Juszyńska, E.; Kolek, Ł.; et al. Signatures of glass transition in partially ordered phases. Liquid. Crystals. 2013, 40, 1436-42.

34. Organ, S. J.; Barham, P. J. On the equilibrium melting temperature of polyhydroxybutyrate. Polymer 1993, 34, 2169-74.

35. Zhao, Y.; Cao, S.; Zeng, L.; Xia, M.; Jakse, N.; Li, J. Intermetallics in Ni-Al binary alloys: liquid structural origin. Metall. Mater. Trans. A. 2023, 54, 646-57.

36. Reinhart, G.; Buffet, A.; Nguyen-thi, H.; et al. In-situ and real-time analysis of the formation of strains and microstructure defects during solidification of Al-3.5 Wt Pct Ni alloys. Metall. Mater. Trans. A. 2008, 39, 865-74.

37. Zhang, Y.; Fan, L.; Wang, X.; Xie, J.; Shi, Y. Fabrication and luminescence of highly transparent C12A7:Tb3+ glass-ceramics via in-situ crystallization from aerodynamic levitation processed glasses. Journal. of. Rare. Earths. 2023, 41, 1696-702.

38. Anderson, C. D.; Hofmeister, W. H.; Bayuzick, R. J. Solidification kinetics and metastable phase formation in binary Ti-Al. Metall. Trans. A. 1992, 23, 2699-714.

39. Nagashio, K.; Kuribayashi, K.; Vijaya Kumar, M. S.; et al. In situ identification of the metastable phase during solidification from the undercooled YFeO3 melt by fast X-ray diffractometry at 250 Hz. Appl. Phys. Lett. 2006, 89, 241923.

40. Watanabe, M.; Watanabe, Y.; Koyama, C.; et al. Density, surface tension, and viscosity of Co-Cr-Mo melts measured using electrostatic levitation technique. Thermochim. Acta. 2022, 710, 179183.

41. Gangopadhyay, A. K.; Lee, G. W.; Kelton, K. F.; et al. Beamline electrostatic levitator for in situ high energy x-ray diffraction studies of levitated solids and liquids. Rev. Sci. Instrum. 2005, 76, 073901.

42. Mauro, N. A.; Kelton, K. F. A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy x-ray scattering studies of equilibrium and supercooled liquids. Rev. Sci. Instrum. 2011, 82, 035114.

43. Wang, H. P.; Li, M. X.; Zou, P. F.; Cai, X.; Hu, L.; Wei, B. Experimental modulation and theoretical simulation of zonal oscillation for electrostatically levitated metallic droplets at high temperatures. Phys. Rev. E. 2018, 98, 063106.

44. Hu, L.; Wang, H. P.; Xie, W. J.; Wei, B. B. Electrostatic levitation under the single-axis feedback control condition. Sci. China. Phys. Mech. Astron. 2010, 53, 1438-44.

45. Hu, L.; Wang, W. L.; Yang, S. J.; et al. Dendrite growth within supercooled liquid tungsten and tungsten-tantalum isomorphous alloys. J. Appl. Phys. 2017, 121, 085901.

46. Li, M. X.; Wang, H. P.; Lin, M.; Zheng, C. H.; Wei, B. B. Rapid eutectic growth kinetics of undercooled Nb-Si alloys at electrostatic levitation state. Acta. Mater. 2022, 237, 118157.

47. Wang, H. P.; Liao, H.; Hu, L.; et al. Freezing shrinkage dynamics and surface dendritic growth of floating refractory alloy droplets in outer space. Adv. Mater. 2024, 36, e2313162.

48. Wang, H. P.; Hu, L.; Xie, W. J.; et al. Metastable liquid properties and surface flow patterns of ultrahigh temperature alloys explored in outer space. Angew. Chem. Int. Ed. 2024, 63, e202400312.

49. Wang, H. P.; Liu, D. N.; Zheng, C. H.; et al. Spiral eutectic growth dynamics facilitated by space Marangoni convection and liquid surface wave. Phys. Fluids. 2024, 36, 047137.

50. Acer, E.; Çadırlı, E.; Erol, H.; Gündüz, M. Effect of Growth rate on the microstructure and microhardness in a directionally solidified Al-Zn-Mg alloy. Metall. Mater. Trans. A. 2016, 47, 3040-51.

51. Peng, P.; Li, X.; Li, J.; Su, Y.; Liu, D.; Guo, J. On melt concentration at the solid/liquid interface during preparation of directionally solidified Sn-36 at.%Ni peritectic alloy. Fluid. Phase. Equilibria. 2015, 387, 73-80.

52. Rios, C. T.; Milenkovic, S.; Gama, S.; Caram, R. Influence of the growth rate on the microstructure of a Nb-Al-Ni ternary eutectic. J. Cryst. Growth. 2002, 237-239, 90-4.

53. Su, Y.; Wang, X.; Ren, Y.; Cao, Q.; Zhang, D.; Jiang, J. Z. Temperature-induced structural evolution in liquid Ag-Ga alloys. Phys. Rev. B. 202, 102, 224103.

54. Carl, M.; Smith, J.; Wheeler, R. W.; Ren, Y.; Van Doren, B.; Young, M. L. High-energy synchrotron radiation X-ray diffraction measurements during in situ aging of a NiTi-15 at. % Hf high temperature shape memory alloy. Materialia 2019, 5, 100220.

55. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864.

56. Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133.

57. Zhang, W.; Liu, T.; Bai, Y. First-principles study of the geometrical and electronic structures of InnN2 (n=1-10) clusters. Comput. Theor. Chem. 2012, 986, 57-62.

58. Jiang, Y.; Peng, P. Correlation between the chemical order and nature property of Cu-centered Cu-Zr icosahedral clusters. Mater. Res. Express. 2018, 5, 046302.

59. Tian, D.; Zhao, J. Structure of medium-sized Au clusters by first-principles. J. Comput. Theor. Nanosci. 2009, 6, 318-26.

60. Zhang, Y. Z.; Song, S. P.; Zhou, H. R.; et al. First-principles study on electronic structures of rich-Ni Al-based quasicrystals cluster. Proceedings. of. the. 4th. Annual. International. Conference. on. Material. Science. and. Engineering. , pp 452-57.

61. Lu, W.; Feng, A.; Shen, J. Exploration of the icosahedral clusters in Ni-Nb binary metallic glasses via first-principles theory. J. Non-Cryst. Solids. 2022, 575, 121232.

62. Li, Z.; Zhao, Z.; Zhou, Z.; Wang, H.; Li, S. First-principles calculations on small MgnZn and Mgn-1Zn2 clusters: structures, stability, electronic properties. Mater. Chem. Phys. 2017, 199, 585-90.

63. Born, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann. Phys. 1927, 389, 457-84.

64. Car, R.; Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 1985, 55, 2471-4.

65. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993, 47, 558.

66. Kresse, G.; Hafner, J. Ab initio Hellmann-Feynman molecular dynamics for liquid metals. J. Non-Cryst. Solids. 1993, 156-158, 956-60.

67. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 1990, 41, 7892.

68. Chai, J.; Stroud, D.; Hafner, J.; Kresse, G. Dynamic structure factor of liquid and amorphous Ge from ab initio simulations. Phys. Rev. B. 2003, 67, 104205.

69. Alemany, M. M. G.; Longo, R. C.; Gallego, L. J.; et al. Ab initio molecular dynamics simulations of the static, dynamic, and electronic properties of liquid Pb using real-space pseudopotentials. Phys. Rev. B. 2007, 76, 214203.

70. Jakse, N.; Pasturel, A. Local order and dynamic properties of liquid and undercooled CuxZr1-x alloys by ab initio molecular dynamics. Phys. Rev. B. 2008, 78, 214204.

71. Qin, J.; Gu, T.; Yang, L.; Bian, X. Study on the structural relationship between the liquid and amorphous Fe78Si9B13 alloys by ab initio molecular dynamics simulation. Appl. Phys. Lett. 2007, 90, 201909.

72. Qin, J.; Gu, T.; Yang, L. Structural and dynamical properties of Fe78Si9B13 alloy during rapid quenching by first principles molecular dynamic simulation. J. Non-Cryst. Solids. 2009, 355, 2333-8.

73. Pan, S.; Qin, J.; Gu, T. Correlation between local structure of melts and glass forming ability for Fe70EM10B20 (EM = early transition metal) alloys. J. Non-Cryst. Solids. 2010, 356, 1374-8.

74. Daw, M. S.; Baskes, M. I. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B. 1984, 29, 6443.

75. Foiles, S. M.; Baskes, M. I.; Daw, M. S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B. 1986, 33, 7983.

76. Wang, G.; Wang, C.; Zhang, X.; Li, Z.; Zhou, J.; Sun, Z. Machine learning interatomic potential: bridge the gap between small-scale models and realistic device-scale simulations. iScience 2024, 27, 109673.

77. Xia, J.; Zhang, Y.; Jiang, B. The evolution of machine learning potentials for molecules, reactions and materials. Chem. Soc. Rev. 2025, 54, 4790-821.

78. Blank, T. B.; Brown, S. D.; Calhoun, A. W.; Doren, D. J. Neural network models of potential energy surfaces. J. Chem. Phys. 1995, 103, 4129-37.

79. Lorenz, S.; Groß, A.; Scheffler, M. Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks. Chem. Phys. Lett. 2004, 395, 210-5.

80. Behler, J.; Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 2007, 98, 146401.

81. Bartók, A. P.; Payne, M. C.; Kondor, R.; Csányi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 2010, 104, 136403.

82. Bartók, A. P.; Csányi, G. Gaussian approximation potentials: a brief tutorial introduction. Int. J. Quantum. Chem. 2015, 115, 1051-7.

83. Thompson, A.; Swiler, L.; Trott, C.; Foiles, S.; Tucker, G. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 2015, 285, 316-30.

84. Zhang, L.; Han, J.; Wang, H.; Car, R.; E, W. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 2018, 120, 143001.

85. Shapeev, A. V. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale. Model. Simul. 2016, 14, 1153-73.

86. Zuo, Y.; Chen, C.; Li, X.; et al. Performance and cost assessment of machine learning interatomic potentials. J. Phys. Chem. A. 2020, 124, 731-45.

87. Li, X.; Hu, C.; Chen, C.; Deng, Z.; Luo, J.; Ong, S. Quantum-accurate spectral neighbor analysis potential models for Ni-Mo binary alloys and fcc metals. Phys. Rev. B. 2018, 98, 094104.

88. Byggmästar, J.; Nordlund, K.; Djurabekova, F. Gaussian approximation potentials for body-centered-cubic transition metals. Phys. Rev. Mater. 2020, 4, 093802.

89. Kondratyuk, N.; Ryltsev, R.; Ankudinov, V.; Chtchelkatchev, N. First-principles calculations of the viscosity in multicomponent metallic melts: Al-Cu-Ni as a test case. J. Mol. Liq. 2023, 380, 121751.

90. Mishin, Y. Machine-learning interatomic potentials for materials science. Acta. Mater. 2021, 214, 116980.

91. Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087-92.

92. McGreevy, R. L.; Pusztai, L. Reverse Monte Carlo simulation: a new technique for the determination of disordered structures. Mol. simulat. 1988, 1, 359-67.

93. Cao, S.; Zeng, L.; Xia, M.; et al. Connecting short-range order for the liquid-solid transition of Al-Cu-Fe alloys. Mater. Today. Commun. 2021, 29, 102956.

94. Harada, M.; Ikegami, R.; Kumara, L. S. R.; Kohara, S.; Sakata, O. Reverse Monte Carlo modeling for local structures of noble metal nanoparticles using high-energy XRD and EXAFS. RSC. Adv. 2019, 9, 29511-21.

95. Smolin, N. P.; Gelchinski, B. R.; Mirzoev, A. A.; Dyuldina, E. V. The analysis of the short-range-order atomic structure of liquid metals by the Voronoi polyhedron method and a check of the adequacy of the results gained by the RMC method. J. Non-Cryst. Solids. 2002, 312-314, 90-4.

96. Kawamata, T.; Hayashi, R.; Sugimoto, K.; Sugiyama, K. Short-range ordering structure found in Pd82Ge18 amorphous alloy determined from anomalous X-ray scattering (AXS) data by applying reverse Monte-Carlo (RMC) simulation method. Mater. Trans. 2024, 65, 362-7.

97. Li, R.; Qin, J.; Gu, T.; Bian, X. Structure of liquid Al80Mn20 alloy by reverse Monte Carlo simulation. J. Non-Cryst. Solids. 2008, 354, 1736-9.

98. Wang, S. Y.; Wang, C. Z.; Li, M. Z.; et al. Short- and medium-range order in a Zr73Pt27 glass: experimental and simulation studies. Phys. Rev. B. 2008, 78, 184204.

99. Kirian, I.; Rud, A.; Roik, O.; Kazimirov, V.; Yakovenko, O.; Lakhnik, A. Local atomic structure of liquid Al87Mg13 alloy. J. Non-Cryst. Solids. 2022, 586, 121562.

100. Roik, O.; Galushko, S.; Samsonnikov, O.; Kazimirov, V.; Sokolskii, V. Structure of liquid Al-Cu-Co alloys near the quasicrystal-forming range. J. Non-Cryst. Solids. 2011, 357, 1147-52.

101. Roik, O.; Yakovenko, O.; Kazimirov, V.; Sokol’skii, V.; Golovataya, N. Comparative analysis of the short-range order in Al-Ge-Ni and Al-Ge-Fe melts. Phys. Chem. Liq. 2021, 59, 938-55.

102. Shtablavyi, I.; Mudry, S.; Mykhaylyuk, V.; Rybicki, J. The structure of Al-Cu and Al-Si eutectic melts. J. Non-Cryst. Solids. 2008, 354, 4469-74.

103. Mudryi, SІ.; Shtablavyi, ІІ.; Kulyk, YО.; Talako, T. L.; Letsko, АІ. Influence of nickel on the structure of Al0.878Si0.122 liquid eutectic. Mater. Sci. 2016, 51, 583-8.

104. Li, X.; Shan, G.; Shek, C. Machine learning prediction of magnetic properties of Fe-based metallic glasses considering glass forming ability. J. Mater. Sci. Technol. 2022, 103, 113-20.

105. Bi, Q.; Liu, J.; Li, J.; Chen, H.; Chen, S.; Han, X. Predicting the magnetic properties of Fe-based bulk metallic glasses by ensemble machine learning and interpretable information. J. Alloys. Compd. 2025, 1016, 178858.

106. Zhang, Y.; Xing, G.; Sha, Z.; Poh, L. A two-step fused machine learning approach for the prediction of glass-forming ability of metallic glasses. J. Alloys. Compd. 2021, 875, 160040.

107. Szymanski, N. J.; Fu, S.; Persson, E.; Ceder, G. Integrated analysis of X-ray diffraction patterns and pair distribution functions for machine-learned phase identification. npj. Comput. Mater. 2024, 10, 1230.

108. Ma, Y.; Xu, P.; Li, M.; Ji, X.; Zhao, W.; Lu, W. The mastery of details in the workflow of materials machine learning. npj. Comput. Mater. 2024, 10, 141.

109. Yang, Z.; Miao, Q.; Dan, J.; Liu, M.; Wang, Y. Structural mechanism of glass transition uncovered by unsupervised machine learning. Acta. Mater. 2024, 281, 120410.

110. Liu, C.; Wang, Y.; Wang, Y.; et al. Concurrent prediction of metallic glasses’ global energy and internal structural heterogeneity by interpretable machine learning. Acta. Mater. 2023, 259, 119281.

111. Zhao, L.; Ren, Y.; Shi, X.; et al. Unveiling the unexpected sinking and embedding dynamics of surface supported Mo/S clusters on 2D MoS2 with active machine learning. Smart. Mol. 2025, 3, e20240018.

112. Kahl, G.; Hafner, J. The influence of medium- and long-range forces on the structure of liquid binary alloys II concentration-dependent changes in the topological-short-range order of Al-Ge alloys. Phys. Chem. Liq. 1988, 17, 267-77.

113. Cowley, J. M. An approximate theory of order in alloys. Phys. Rev. 1950, 77, 669.

114. Han, X. J.; Schober, H. R. Transport properties and Stokes-Einstein relation in a computer-simulated glass-forming Cu33.3Zr66.7 melt. Phys. Rev. B. 2011, 83, 224201.

115. Frank, F. C. Supercooling of liquids. Proc. R. Soc. Lond. A. Math. Phys. Sci. 1952, 215, 43-6.

116. Steinhardt, P. J.; Nelson, D. R.; Ronchetti, M. Icosahedral bond orientational order in supercooled liquids. Phys. Rev. Lett. 1981, 47, 1297.

117. Steinhardt, P. J.; Nelson, D. R.; Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B. 1983, 28, 784.

118. Georgarakis, K.; Stiehler, M. E.; Hennet, L.; et al. In-situ monitoring the structural pathway of a Ti-based alloy from metallic liquid to metallic glass. J. Alloys. Compd. 2025, 1025, 180214.

119. Li, H.; Wang, G.; Ding, F.; Wang, J.; Shen, W. Molecular dynamics computation of clusters in liquid Fe-Al alloy. Phys. Lett. A. 2001, 280, 325-32.

120. Guo, G.; Wu, S.; Yang, L. Structural origin of the enhanced glass-forming ability induced by microalloying Y in the ZrCuAl Alloy. Metals 2016, 6, 67.

121. Xiao, J. H.; Ding, D. W.; Li, L.; Sun, Y. T.; Li, M. Z.; Wang, W. H. Effect of Y element on atomic structure, glass forming ability, and magnetic properties of FeBC alloy. Chinese. Phys. B. 2024, 33, 076101.

122. Hopur, P.; Chen, W.; Zhou, Y.; Zhou, J.; Wang, T. The correlation among the atomic structure, electronic valence band and properties of Zr-Cu-Al-Ag bulk metallic glasses. Metals 2023, 13, 1181.

123. Tang, S.; Wang, J.; Svendsen, B.; Raabe, D. Competitive bcc and fcc crystal nucleation from non-equilibrium liquids studied by phase-field crystal simulation. Acta. Mater. 2017, 139, 196-204.

124. Wang, L.; Cong, H.; Zhang, J.; Bian, X.; Li, H.; Qin, J. Medium-range order structure in Al80Fe20 alloy during rapid solidification. Phys. Lett. A. 2002, 301, 477-83.

125. Ryu, C. W.; Egami, T. Medium-range atomic correlation in simple liquids. I. Distinction from short-range order. Phys. Rev. E. 2021, 104, 064109.

126. Egami, T.; Ryu, C. W. Medium-range atomic correlation in simple liquids. II. Theory of temperature dependence. Phys. Rev. E. 2021, 104, 064110.

127. Liu, Y.; Yang, Z.; Yang, Y.; Luo, J.; Huang, X. Investigating the influence of medium range order defects on shear instability in Cu64Zr36 metallic glass. J. Non-Cryst. Solids. 2024, 629, 122891.

128. Swierczek, J.; Hasiak, M. Microstructure and magnetic entropy change in amorphous Fe76Mo10Cu1B13 alloy. IEEE. Trans. Magn. 2014, 50, 1-4.

129. Nomoto, K.; Ceguerra, A. V.; Gammer, C.; et al. Medium-range order dictates local hardness in bulk metallic glasses. Materials. Today. 2021, 44, 48-57.

130. Stanley, H. E. Liquid polymorphism; Wiley Online Library: 2013, Volume 152.

131. Poole, P. H.; Hemmati, M.; Angell, C. A. Comparison of thermodynamic properties of simulated liquid silica and water. Phys. Rev. Lett. 1997, 79, 2281.

132. Chen, E.; Peng, S.; Peng, L.; et al. Glass-forming ability correlated with the liquid-liquid transition in Pd42.5Ni42.5P15 alloy. Scrpta. Mater. 2021, 193, 117-21.

133. Ding, Y.; Shi, F.; Li, Y.; Wang, Z.; Hu, L. Mechanical properties of Cu46Zr46Al8 metallic glasses affected by liquid-liquid phase transition. J. Non-Cryst. Solids. 2024, 632, 122906.

134. Zhai, X.; Chu, W.; Bai, Y.; et al. An intrinsic connection between the liquid-liquid transition and fragile-to-strong transition in soft magnetic Fe-based metallic glasses: comparisons with other metallic glasses. Scrpta. Mater. 2024, 243, 115982.

135. Zhai, X.; Li, X.; Wang, Z.; et al. The connection between the fragile-to-strong transition and the liquid-liquid transition in a binary alloy system. Acta. Mater. 2022, 239, 118246.

136. Sengul, S.; Celtek, M.; Domekeli, U. The structural evolution and abnormal bonding ways of the Zr80Pt20 metallic liquid during rapid solidification under high pressure. Comput. Mater. Sci. 2020, 172, 109327.

137. Yu, P.; Han, X.; Xia, M.; et al. Abnormal endothermic liquid-liquid phase transition upon cooling Pd40Ni40P20 melts. Appl. Phys. Lett. 2024, 125, 031902.

138. Lü, P.; Wang, H. P.; Zou, P. F.; Zhou, K.; Hu, L.; Wei, B. Local atomic structure correlating to phase selection in undercooled liquid Ni-Zr peritectic alloy. J. Appl. Phys. 2018, 124, 025103.

139. Zhao, X.; Bian, X.; Li, X.; Song, K.; Bai, Y.; Li, Y. Local structure of supercooled liquid Ga90In10 alloy. Chin. J. Phys. 2021, 73, 74-80.

140. Li, H.; Ding, F.; Wang, G.; Zhang, J.; Bian, X. Evolution of small nickel cluster during solidification. Solid. State. Commun. 2001, 120, 41-6.

141. Wang, J.; Qin, J.; Zhou, J.; et al. Correlation between mixing enthalpy and structural order in liquid Mg-Si system. Trans. Nonferrous. Met. Soc. China. 2021, 31, 853-64.

142. Ma, J.; Dai, Y.; Zhang, J.; Zhang, Z.; Wang, J.; Sun, B. Ab initio molecular dynamics study of the structure of undercooled Ni melt. J. Non-Cryst. Solids. 2013, 376, 216-20.

143. Jakse, N.; Pasturel, A. Glass forming ability and short-range order in a binary bulk metallic glass by ab initio molecular dynamics. Appl. Phys. Lett. 2008, 93, 113104.

144. Liu, R. S.; Dong, K. J.; Li, J. Y.; Yu, A. B.; Zou, R. P. Molecular dynamics simulation of microstructure transitions in a large-scale liquid metal Al system during rapid cooling processes. Chin. Phys. Lett. 2002, 19, 1144-7.

145. Xiong, L.; Chen, K.; Ke, F.; et al. Structural and dynamical properties of liquid Ag74Ge26 alloy studied by experiments and ab initio molecular dynamics simulation. Acta. Mater. 2015, 92, 109-16.

146. Ren, L.; Gao, T.; Ma, R.; et al. The connection of icosahedral and defective icosahedral clusters in medium-range order structures of CuZrAl alloy. J. Non-Cryst. Solids. Solids. 2019, 521, 119475.

147. Trady, S.; Hasnaoui, A.; Mazroui, M. Atomic packing and medium-range order in Ni3Al metallic glass. J. Non-Cryst. Solids. 2017, 468, 27-33.

148. Wang, C.; Wong, C. Short-to-medium range order of Al-Mg metallic glasses studied by molecular dynamics simulations. J. Alloys. Compd. 2011, 509, 10222-9.

149. Li, Z.; Feng, Y.; Wen, Y.; et al. Ab initio molecular dynamics study on the local structures and solid/liquid interface in liquid Al-Ti and Al-B-Ti alloys. Mater. Today. Commun. 2024, 39, 109290.

150. Zhang, W. B.; Wang, X. D.; Cao, Q. P.; Zhang, D. X.; Fecht, H. J.; Jiang, J. Z. Structure and dynamical properties of liquid Ni64Zr36 and Ni65Hf35 alloys: an ab initio molecular dynamics study. J. Phys. Condens. Matter. 2018, 30, 365401.

151. Wang, W.; Fang, H.; Shang, S.; et al. Atomic structure and diffusivity in liquid Al80Ni20 by ab initio molecular dynamics simulations. Physica. B. Condens. Matter. 2011, 406, 3089-97.

152. Jakse, N.; Pasturel, A. Correlation between dynamic slowing down and local icosahedral ordering in undercooled liquid Al80Ni20 alloy. J. Chem. Phys. 2015, 143, 084508.

153. Gu, T. K.; Qin, J. Y.; Bian, X. F. Correlation between local structure of melts and glass forming ability for Al-based alloys: a first-principles study. Appl. Phys. Lett. 2007, 91, 081907.

154. Li, Y.; Lu, Q.; Wang, C.; Huang, S.; Liu, C. Local order evolution of liquid Cu during glass transition under different pressures: a molecular dynamics study. Physica. B. Condens. Matter. 2013, 408, 6-11.

155. Zhang, H.; Mo, Y.; Liu, R.; et al. Effects of high pressure on microstructure evolution and crystallization mechanisms during solidification of nickel. Mater. Res. Express. 2018, 5, 036507.

156. Qi, L.; Dong, L.; Zhang, S.; et al. Cluster evolution in the rapid cooling process of Cu-Ag melts under high pressure: molecular-dynamics simulation. Comput. Mater. Sci. 2008, 43, 732-5.

157. Domekeli, U. A molecular dynamic study of the effects of high pressure on the structure formation of liquid metallic Ti62Cu38 alloy during rapid solidification. Comput. Mater. Sci. 2021, 187, 110089.

158. Jiang, D.; Wen, D.; Tian, Z.; Liu, R. Glass formation and cluster evolution in the rapidly solidified monatomic metallic liquid Ta under high pressure. Physica. A. Stat. Mech. Appl. 2016, 463, 174-81.

159. Celik, F. A.; Kazanc, S. The local order and structural evolution of amorphous PdAg alloy during isothermal annealing under high pressure: A molecular dynamics study. Can. J. Phys. 2015, 93, 7-13.

160. Hou, Z. Y.; Dong, K. J.; Tian, Z. A.; Liu, R. S.; Wang, Z.; Wang, J. G. Cooling rate dependence of solidification for liquid aluminium: a large-scale molecular dynamics simulation study. Phys. Chem. Chem. Phys. 2016, 18, 17461-9.

161. Chen, Y.; Sun, Y.; Cheng, W.; Meng, A.; Zhang, S.; Wang, P. Tissue evolution of Al0.67Cu0.33 alloy during melting and solidification by molecular dynamics simulation. Chem. Phys. 2023, 575, 112049.

162. Fang, H.; Hui, X.; Chen, G.; et al. Ab initio molecular dynamics simulation for structural transition of Zr during rapid quenching processes. Comput. Mater. Sci. 2008, 43, 1123-9.

163. Hafi, T.; Bajjou, O.; Jabraoui, H.; Louafi, J.; Mazroui, M.; Lachtioui, Y. Effects of cooling rate on the glass formation process and the microstructural evolution of Silver mono-component metallic glass. Chem. Phys. 2023, 569, 111873.

164. Song, J.; Wang, L.; Fan, D.; Zhang, L.; Wu, W.; Gao, Z. Cooling rate dependence of the properties for Ti110Al14V4 alloy investigated by ab initio molecular dynamics. J. Mol. Liq. 2021, 343, 117604.

165. Li, F.; Zhang, H.; Liu, X.; Yu, C.; Lu, Z. Effects of cooling rate on the atomic structure of Cu64Zr36 binary metallic glass. Comput. Mater. Sci. 2018, 141, 59-67.

166. Xie, Z.; Gao, T.; Guo, X.; Qin, X.; Xie, Q. Evolution of icosahedral clusters during the rapid solidification of liquid TiAl alloy. Physica. B. Condens. Matter. 2014, 440, 130-7.

167. Gu, T.; Qin, J.; Xu, C.; Bian, X. Structural, bonding, and dynamical properties of liquid Fe-Si alloys: an ab initio molecular-dynamics simulation. Phys. Rev. B. 2004, 70, 144204.

168. Pasturel, A.; Tasci, E. S.; Sluiter, M. H. F.; Jakse, N. Structural and dynamic evolution in liquid Au-Si eutectic alloy by ab initio molecular dynamics. Phys. Rev. B. 2010, 81, 140202.

169. Celtek, M.; Domekeli, U.; Sengul, S.; Canan, C. Effects of Ag or Al addition to CuZr-based metallic alloys on glass formation and structural evolution: a molecular dynamics simulation study. Intermetallics 2021, 128, 107023.

170. Xiong, L. H.; Wang, X. D.; Cao, Q. P.; et al. Composition- and temperature-dependent liquid structures in Al-Cu alloys: an ab initio molecular dynamics and X-ray diffraction study. J. Phys. Condens. Matter. 2017, 29, 035101.

171. Liang, Y.; Xian, G.; Zhou, L.; et al. Influence of cluster correlation on nanoclusters in Fe-Ni amorphous alloys. J. Alloys. Compounds. 2022, 891, 161953.

172. Yu, K.; Cao, Q.; Yu, Q.; et al. Glass forming ability and bending plasticity evolutions in Zr-Co-Al bulk metallic glasses and their structural origin. J. Non-Cryst. Solids. 2018, 488, 52-62.

173. Xu, M.; Xia, M.; Hu, Q.; Li, J. Heterogeneous nucleation behavior in Al deoxidized liquid iron. Mater. Trans. 2018, 59, 1949-51.

174. Pasturel, A.; Jakse, N. Effect of pentagonal-coordinated surface on crystal nucleation of an undercooled melt. Sci. Rep. 2018, 8, 14314.

175. Zhang, D.; Wang, L.; Xia, M.; Hari Babu, N.; Li, J. Misfit paradox on nucleation potency of MgO and MgAl2O4 for Al. Mater. Charact. 2016, 119, 92-8.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/