REFERENCES

1. Sun, C.; Bai, B. Molecular sieving through a graphene nanopore: non-equilibrium molecular dynamics simulation. Sci. Bull. (Beijing). 2017, 62, 554-62.

2. Gong, X.; Li, J.; Xu, K.; Wang, J.; Yang, H. A controllable molecular sieve for Na+ and K+ ions. J. Am. Chem. Soc. 2010, 132, 1873-7.

3. Ma, Y.; Li, H.; Liu, J.; Zhao, D. Understanding the chemistry of mesostructured porous nanoreactors. Nat. Rev. Chem. 2024, 8, 915-31.

4. Ying, Y.; Gao, R.; Hu, Y.; Long, Y. Electrochemical confinement effects for innovating new nanopore sensing mechanisms. Small. Methods. 2018, 2, 1700390.

5. Dai, J.; Zhang, H. Recent advances in catalytic confinement effect within micro/meso-porous crystalline materials. Small 2021, 17, e2005334.

6. Zhou, W.; Deng, Q. W.; Ren, G. Q.; et al. Enhanced carbon dioxide conversion at ambient conditions via a pore enrichment effect. Nat. Commun. 2020, 11, 4481.

7. Gao, R.; Lin, Y.; Ying, Y. L.; et al. Dynamic self-assembly of homogenous microcyclic structures controlled by a silver-coated nanopore. Small 2017, 13.

8. Gu, Z.; Cai, Z.; Elmegreen, B.; et al. How water adsorbed on porous graphene affects CO2 capture and separation. Chem. Eng. J. 2023, 474;145778.

9. Blonskaya, I.; Lizunov, N.; Olejniczak, K.; et al. Elucidating the roles of diffusion and osmotic flow in controlling the geometry of nanochannels in asymmetric track-etched membranes. J. Membr. Sci. 2021, 618, 118657.

10. Gu, J.; Fan, X.; Liu, X.; et al. Mesoporous manganese oxide with large specific surface area for high-performance asymmetric supercapacitor with enhanced cycling stability. Chem. Eng. J. , 2017, 324:35-43.

11. C.; Burch, R. Mesoporous materials for water treatment processes. Water. Res. 1999, 33, 3689-94.

12. Zhao, X.; Gao, P.; Shen, B.; Wang, X.; Yue, T.; Han, Z. Recent advances in lignin-derived mesoporous carbon based-on template methods. Renew. Sustain. Energy. Rev. 2023, 188, 113808.

13. Dong, Z.; Chen, W.; Xu, K.; Liu, Y.; Wu, J.; Zhang, F. Understanding the structure-activity relationships in catalytic conversion of polyolefin plastics by zeolite-based catalysts: a critical review. ACS. Catal. 2022, 12, 14882-901.

14. He, X.; Tian, Y.; Qiao, C.; et al. Acid-driven architecture of hierarchical porous ZSM-5 with high acidic quantity and its catalytic cracking performance. Chem. Eng. J. 2023, 473, 145334.

15. Dai, L.; Zhou, N.; Cobb, K.; et al. Insights into structure-performance relationship in the catalytic cracking of high density polyethylene. Appl. Catal. B. Environ. 2022, 318, 121835.

16. Duan, L.; Wang, C.; Zhang, W.; et al. Interfacial assembly and applications of functional mesoporous materials. Chem. Rev. 2021, 121, 14349-429.

17. Dong, C.; Han, L.; Zhang, C.; Zhang, Z. Scalable dealloying route to mesoporous ternary conife layered double hydroxides for efficient oxygen evolution. ACS. Sustain. Chem. Eng. 2018, 6, 16096-104.

18. Lee, S.; Park, Y.; Choi, M. Cooperative interplay of micropores/mesopores of hierarchical zeolite in chemical production. ACS. Catal. 2024, 14, 2031-48.

19. Zürner, A.; Kirstein, J.; Döblinger, M.; Bräuchle, C.; Bein, T. Visualizing single-molecule diffusion in mesoporous materials. Nature 2007, 450, 705-8.

20. Calvo, A.; Yameen, B.; Williams, F. J.; Soler-Illia, G. J.; Azzaroni, O. Mesoporous films and polymer brushes helping each other to modulate ionic transport in nanoconfined environments. An interesting example of synergism in functional hybrid assemblies. J. Am. Chem. Soc. 2009, 131, 10866-8.

21. Zhao, X.; Li, Y.; Gong, Q.; et al. Chemical reaction kinetics-guided size and pore structure tuning strategy for fabricating hollow carbon spheres and their selective adsorption properties. Carbon 2021, 183, 158-68.

22. Huff, C. A.; Sanford, M. S. Cascade catalysis for the homogeneous hydrogenation of CO2 to methanol. J. Am. Chem. Soc. 2011, 133, 18122-5.

23. Xu, W.; Jiao, L.; Wu, Y.; et al. Metal-organic frameworks enhance biomimetic cascade catalysis for biosensing. Adv. Mater. 2021, 33, 2005172.

24. Mo, T.; Bi, S.; Zhang, Y.; et al. Ion structure transition enhances charging dynamics in subnanometer pores. ACS. Nano. 2020, 14, 2395-403.

25. Kondrat, S.; Wu, P.; Qiao, R.; Kornyshev, A. A. Accelerating charging dynamics in subnanometre pores. Nat. Mater. 2014, 13, 387-93.

26. Wu, D.; Zhang, P.; Yang, G.; et al. Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications. Coord. Chem. Rev. 2021, 434, 213709.

27. Ji, Z.; Wang, H.; Canossa, S.; Wuttke, S.; Yaghi, O. M. Pore chemistry of metal-organic frameworks. Adv. Funct. Mater. 2020, 30, 2000238.

28. Zhao, D.; Feng, J.; Huo, Q.; et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548-52.

29. Pang, X.; Zhao, L.; Han, W.; Xin, X.; Lin, Z. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nat. Nanotechnol. 2013, 8, 426-31.

30. Zhao, Z.; Wang, X.; Jing, X.; et al. General synthesis of ultrafine monodispersed hybrid nanoparticles from highly stable monomicelles. Adv. Mater. 2021, 33, e2100820.

31. Zhao, T.; Chen, L.; Lin, R.; et al. Interfacial Assembly directed unique mesoporous architectures: from symmetric to asymmetric. Acc. Mater. Res. 2020, 1, 100-14.

32. Kruk, M. Access to ultralarge-pore ordered mesoporous materials through selection of surfactant/swelling-agent micellar templates. Acc. Chem. Res. 2012, 45, 1678-87.

33. Xie, L.; Liu, J.; Bao, X.; et al. Interfacial assembly of nanowire arrays toward carbonaceous mesoporous nanorods and superstructures. Small 2022, 18, e2104477.

34. Li, D.; Gong, B.; Cheng, X.; et al. An efficient strategy toward multichambered carbon nanoboxes with multiple spatial confinement for advanced sodium-sulfur batteries. ACS. Nano. 2021, 15, 20607-18.

35. Xu, H.; Han, J.; Zhao, B.; et al. A facile dual-template-directed successive assembly approach to hollow multi-shell mesoporous metal-organic framework particles. Nat. Commun. 2023, 14, 8062.

36. Huang, C.; Sun, W.; Jin, Y.; et al. A general synthesis of nanostructured conductive metal-organic frameworks from insulating MOF precursors for supercapacitors and chemiresistive sensors. Angew. Chem. Int. Ed. Engl. 2024, 63, e202313591.

37. Wang, T.; Zhang, L.; Gu, J.; et al. Competition among refined hollow structures in schiff base polymer derived carbon microspheres. Nano. Lett. 2022, 22, 3691-8.

38. Yan, M.; Hou, J.; Zhou, J. Effective adsorption of cyclohexene and analytically perfect separation of cyclohexene/cyclohexanol azeotropes by nonporous adaptive crystals of a Hybrid[3]arene. Chem. Mater. 2024, 36, 10850-6.

39. Pan, P.; Liu, Q.; Hu, L.; et al. Dual-template induced interfacial assembly of yolk-shell magnetic mesoporous polydopamine vesicles with tunable cavity for enhanced photothermal antibacterial. Chem. Eng. J. 2023, 472, 144972.

40. Zhao, T.; Zhang, X.; Lin, R.; et al. Surface-confined winding assembly of mesoporous nanorods. J. Am. Chem. Soc. 2020, 148, 20359-67.

41. Yan, M.; Liu, T.; Li, X.; et al. Soft patch interface-oriented superassembly of complex hollow nanoarchitectures for smart dual-responsive nanospacecrafts. J. Am. Chem. Soc. 2022, 144, 7778-89.

42. Zhao, T.; Lin, R.; Xu, B.; et al. Mesoporous nano-badminton with asymmetric mass distribution: how nanoscale architecture affects the blood flow dynamics. J. Am. Chem. Soc. 2023, 145, 21454-64.

43. Liu, M.; Shang, C.; Zhao, T.; et al. Site-specific anisotropic assembly of amorphous mesoporous subunits on crystalline metal-organic framework. Nat. Commun. 2023, 14, 1211.

44. Falkowska, M.; Bowron, D. T.; Manyar, H.; Youngs, T. G. A.; Hardacre, C. Confinement effects on the benzene orientational structure. Angew. Chem. Int. Ed. Engl. 2018, 57, 4565-70.

45. Li, K.; Zhao, Y.; Yang, J.; Gu, J. Nanoemulsion-directed growth of MOFs with versatile architectures for the heterogeneous regeneration of coenzymes. Nat. Commun. 2022, 13, 1879.

46. Wu, T.; Chen, G.; Han, J.; et al. Construction of three-dimensional dendritic hierarchically porous metal-organic framework nanoarchitectures via noncentrosymmetric pore-induced anisotropic assembly. J. Am. Chem. Soc. 2023, 145, 16498-507.

47. Peng, L.; Hung, C. T.; Wang, S.; et al. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 2019, 141, 7073-80.

48. Peng, L.; Peng, H.; Xu, L.; et al. Anisotropic self-assembly of asymmetric mesoporous hemispheres with tunable pore structures at liquid-liquid interfaces. J. Am. Chem. Soc. 2022, 144, 15754-63.

49. Qiu, B.; Xie, L.; Zeng, J.; et al. Interfacially super-assembled asymmetric and H2O2 sensitive multilayer-sandwich magnetic mesoporous silica nanomotors for detecting and removing heavy metal ions. Adv. Funct. Mater. 2021, 31, 2010694.

50. Ma, Y.; Lan, K.; Xu, B.; et al. Streamlined mesoporous silica nanoparticles with tunable curvature from interfacial dynamic-migration strategy for nanomotors. Nano. Lett. 2021, 21, 6071-9.

51. Ma, Y.; Zhu, Y.; Lin, R.; et al. Synthesis of branched silica nanotrees using a nanodroplet sequential fusion strategy. Nat. Synth. 2024, 3, 236-44.

52. Zhang, M.; Ettelaie, R.; Dong, L.; et al. Pickering emulsion droplet-based biomimetic microreactors for continuous flow cascade reactions. Nat. Commun. 2022, 13, 475.

53. Heidari, F.; Jafari, S. M.; Ziaiifar, A. M.; Malekjani, N. Stability and release mechanisms of double emulsions loaded with bioactive compounds; a critical review. Adv. Colloid. Interface. Sci. 2022, 299, 102567.

54. Hao, R.; Zhang, M.; Tian, D.; et al. Bottom-up synthesis of multicompartmentalized microreactors for continuous flow catalysis. J. Am. Chem. Soc. 2023, 145, 20319-27.

55. Zheng, Z.; Hu, Z.; Lou, Y.; et al. Porosity vs carbon shell number: key factor actually affecting the performance of multi-shelled hollow carbon nanospheres in Li-S batteries. J. Electroanal. Chem. 2022, 927, 116980.

56. Pi, Y.; Ma, Y.; Wang, X.; et al. Multilevel hollow phenolic resin nanoreactors with precise metal nanoparticles spatial location toward promising heterogeneous hydrogenations. Adv. Mater. 2022, 34, e2205153.

57. Pi, Y.; Cui, L.; Luo, W.; et al. Design of hollow nanoreactors for size- and shape-selective catalytic semihydrogenation driven by molecular recognition. Angew. Chem. Int. Ed. Engl. 2023, 62, e202307096.

58. Teng, Z.; Su, X.; Zheng, Y.; et al. A Facile Multi-interface transformation approach to monodisperse multiple-shelled periodic mesoporous organosilica hollow spheres. J. Am. Chem. Soc. 2015, 137, 7935-44.

59. Su, X.; Tang, Y.; Li, Y.; et al. Facile synthesis of monodisperse hollow mesoporous organosilica/silica nanospheres by an in situ dissolution and reassembly approach. ACS. Appl. Mater. Interfaces. 2019, 11, 12063-9.

60. Zou, H.; Dai, J.; Suo, J.; et al. Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation. Nat. Commun. 2021, 12, 4968.

61. Yao, D.; Wang, Y.; Li, Y.; Zhao, Y.; Lv, J.; Ma, X. A High-performance nanoreactor for carbon-oxygen bond hydrogenation reactions achieved by the morphology of nanotube-assembled hollow spheres. ACS. Catal. 2018, 8, 1218-26.

62. Pan, X.; Bao, X. The effects of confinement inside carbon nanotubes on catalysis. Acc. Chem. Res. 2011, 44, 553-62.

63. Guan, J.; Pan, X.; Liu, X.; Bao, X. Syngas segregation induced by confinement in carbon nanotubes: a combined first-principles and Monte Carlo study. J. Phys. Chem. C. 2009, 113, 21687-92.

64. Yao, D.; Wang, Y.; Hassan-legault, K.; et al. Balancing effect between adsorption and diffusion on catalytic performance inside hollow nanostructured catalyst. ACS. Catal. 2019, 9, 2969-76.

65. Lancet, D.; Pecht, I. Spectroscopic and immunochemical studies with nitrobenzoxadiazolealanine, a fluorescent dinitrophenyl analogue. Biochemistry 1977, 16, 5150-7.

66. Ma, Y.; Wang, L.; Zhao, W.; et al. Reactant enrichment in hollow void of Pt NPs&MnOx nanoreactors for boosting hydrogenation performance. Natl. Sci. Rev. 2023, 10, nwad201.

67. Ma, Y.; Zhang, H.; Lin, R.; et al. Remodeling nanodroplets into hierarchical mesoporous silica nanoreactors with multiple chambers. Nat. Commun. 2022, 13, 6136.

68. Guo, X.; Xue, N.; Zhang, M.; Ettelaie, R.; Yang, H. A supraparticle-based biomimetic cascade catalyst for continuous flow reaction. Nat. Commun. 2022, 13, 5935.

69. Chen, G.; Han, J.; Niu, Z.; et al. Regioselective surface assembly of mesoporous carbon on zeolites creating anisotropic wettability for biphasic interface catalysis. J. Am. Chem. Soc. 2023, 145, 9021-8.

70. Li, K.; Zou, H.; Tong, X.; Yang, H. Enhanced photobiocatalytic cascades at pickering droplet interfaces. J. Am. Chem. Soc. 2024, 146, 17054-65.

71. Wang, B.; Wang, L.; Mamoor, M.; et al. Manipulating atomic-coupling in dual-cavity boride nanoreactor to achieve hierarchical catalytic engineering for sulfur cathode. Angew. Chem. Int. Ed. Engl. 2024, 63, e202406065.

72. Chen, D.; Yu, R.; Yu, K.; et al. Bicontinuous RuO2 nanoreactors for acidic water oxidation. Nat. Commun. 2024, 15, 3928.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/