REFERENCES
1. Kawazoe, H.; Yanagi, H.; Ueda, K.; Hosono, H. Transparent p -type conducting oxides: design and fabrication of p-n heterojunctions. MRS. Bull. 2000, 25, 28-36.
2. Hosono, H. Ionic amorphous oxide semiconductors: material design, carrier transport, and device application. J. Non. Cryst. Solids. 2006, 352, 851-8.
3. Moon, G. D.; Ko, S.; Xia, Y.; Jeong, U. Chemical transformations in ultrathin chalcogenide nanowires. ACS. Nano. 2010, 4, 2307-19.
4. Liang, H. W.; Liu, J. W.; Qian, H. S.; Yu, S. H. Multiplex templating process in one-dimensional nanoscale: controllable synthesis, macroscopic assemblies, and applications. Acc. Chem. Res. 2013, 46, 1450-61.
5. Liu, J. W.; Zhu, J. H.; Zhang, C. L.; Liang, H. W.; Yu, S. H. Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc. 2010, 132, 8945-52.
6. Niu, C.; Qiu, G.; Wang, Y.; et al. Tunable chirality-dependent nonlinear electrical responses in 2D tellurium. Nano. Lett. 2023, 23, 8445-53.
7. Calavalle, F.; Suárez-Rodríguez, M.; Martín-García, B.; et al. Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires. Nat. Mater. 2022, 21, 526-32.
8. Ben-Moshe, A.; da Silva, A.; Müller, A.; et al. The chain of chirality transfer in tellurium nanocrystals. Science 2021, 372, 729-33.
9. Niu, C.; Huang, S.; Ghosh, N.; et al. Tunable circular photogalvanic and photovoltaic effect in 2D tellurium with different chirality. Nano. Lett. 2023, 23, 3599-606.
11. Cao, Y.; Fatemi, V.; Fang, S.; et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43-50.
12. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.
13. Mayers, B.; Xia, Y. One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach. J. Mater. Chem. , 12, 1875-81.
14. von Hippel, A. Structure and Conductivity in the VIb group of the periodic system. J. Chem. Phys. 1948, 16, 372-80.
15. Li, Z.; Zheng, S.; Zhang, Y.; et al. Controlled synthesis of tellurium nanowires and nanotubes via a facile, efficient, and relatively green solution phase method. J. Mater. Chem. A. 2013, 1, 15046.
16. Mayers, B.; Xia, Y. Formation of tellurium nanotubes through concentration depletion at the surfaces of seeds. Adv. Mater. 2002, 14, 279-82.
17. Deckoff-jones, S.; Wang, Y.; Lin, H.; Wu, W.; Hu, J. Tellurene: a multifunctional material for midinfrared optoelectronics. ACS. Photonics. 2019, 6, 1632-8.
18. Liu, J.; Xu, J.; Hu, W.; Yang, J.; Yu, S. Systematic synthesis of tellurium nanostructures and their optical properties: from nanoparticles to nanorods, nanowires, and nanotubes. ChemNanoMat 2016, 2, 167-70.
19. Liu, A.; Kim, Y. S.; Kim, M. G.; et al. Selenium-alloyed tellurium oxide for amorphous p-channel transistors. Nature 2024, 629, 798-802.
20. Zhao, C.; Tan, C.; Lien, D. H.; et al. Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nat. Nanotechnol. 2020, 15, 53-8.
21. Zhou, G.; Addou, R.; Wang, Q.; et al. High-mobility helical tellurium field-effect transistors enabled by transfer-free, low-temperature direct growth. Adv. Mater. 2018, 30, 1803109.
22. Kim, T.; Choi, C. H.; Byeon, P.; et al. Growth of high-quality semiconducting tellurium films for high-performance p-channel field-effect transistors with wafer-scale uniformity. npj. 2D. Mater. Appl. 2022, 6, 4.
23. Zhu, H.; Fan, L.; Wang, K.; Liu, H.; Zhang, J.; Yan, S. Progress in the synthesis and application of tellurium nanomaterials. Nanomaterials 2023, 13, 2057.
24. Dai, M.; Wang, C.; Qiang, B.; et al. Long-wave infrared photothermoelectric detectors with ultrahigh polarization sensitivity. Nat. Commun. 2023, 14, 3421.
25. Yao, J.; Chen, F.; Li, J.; et al. A high-performance short-wave infrared phototransistor based on a 2D tellurium/MoS2 van der Waals heterojunction. J. Mater. Chem. C. 2021, 9, 13123-31.
26. Tao, J. J.; Jiang, J.; Zhao, S. N.; et al. Fabrication of 1D Te/2D ReS2 mixed-dimensional van der Waals p-n heterojunction for high-performance phototransistor. ACS. Nano. 2021, 15, 3241-50.
27. Wang, H.; Huang, H.; Zha, J.; et al. Asymmetrically contacted tellurium short-wave infrared photodetector with low dark current and high sensitivity at room temperature. Adv. Opt. Mater. 2023, 11, 2301508.
28. Zha, J.; Xia, Y.; Shi, S.; et al. A 2D heterostructure-based multifunctional floating gate memory device for multimodal reservoir computing. Adv. Mater. 2024, 36, 2308502.
29. Bach, T. P. A.; Cho, S.; Kim, H.; Nguyen, D. A.; Im, H. 2D van der Waals heterostructure with tellurene floating-gate for wide range and multi-bit optoelectronic memory. ACS. Nano. 2024, 18, 4131-9.
30. Pokhrel, D.; Bastola, E.; Phillips, A. B.; Heben, M. J.; Ellingson, R. J. Aspect ratio controlled synthesis of tellurium nanowires for photovoltaic applications. Mater. Adv. 2020, 1, 2721-8.
31. Wu, K.; Ma, H.; Gao, Y.; Hu, W.; Yang, J. Highly-efficient heterojunction solar cells based on two-dimensional tellurene and transition metal dichalcogenides. J. Mater. Chem. A. 2019, 7, 7430-6.
32. Kolay, A.; Maity, D.; Ghosal, P.; Deepa, M. Carbon@tellurium nanostructures anchored to a Si nanowire scaffold with an unprecedented liquid-junction solar cell performance. ACS. Appl. Mater. Interfaces. 2019, 11, 47972-83.
33. Wu, L.; Huang, W.; Wang, Y.; et al. 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv. Funct. Mater. 2019, 29, 1806346.
34. Liao, J.; Shao, H.; Zhang, Y.; et al. Infrared in-sensor computing based on flexible photothermoelectric tellurium nanomesh arrays. Adv. Mater. 2025, 37, 2419653.
35. Zha, J.; Shi, S.; Chaturvedi, A.; et al. Electronic/optoelectronic memory device enabled by tellurium-based 2D van der Waals heterostructure for in-sensor reservoir computing at the optical communication band. Adv. Mater. 2023, 35, 2211598.
36. Zhao, A.; Zhang, L.; Pang, Y.; Ye, C. Ordered tellurium nanowire arrays and their optical properties. Appl. Phys. A. 2005, 80, 1725-8.
37. Wang, Y.; Jin, S.; Wang, Q.; et al. Parallel nanoimprint forming of one-dimensional chiral semiconductor for strain-engineered optical properties. Nanomicro. Lett. 2020, 12, 160.
38. Wang, Y.; Wang, R.; Wan, S.; et al. Scalable nanomanufacturing and assembly of chiral-chain piezoelectric tellurium nanowires for wearable self-powered cardiovascular monitoring. Nano. Futures. 2019, 3, 011001.
39. Amani, M.; Tan, C.; Zhang, G.; et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS. Nano. 2018, 12, 7253-63.
40. Lin, S.; Li, W.; Chen, Z.; Shen, J.; Ge, B.; Pei, Y. Tellurium as a high-performance elemental thermoelectric. Nat. Commun. 2016, 7, 10287.
41. Dun, C.; Hewitt, C. A.; Huang, H.; Montgomery, D. S.; Xu, J.; Carroll, D. L. Flexible thermoelectric fabrics based on self-assembled tellurium nanorods with a large power factor. Phys. Chem. Chem. Phys. 2015, 17, 8591-5.
42. Sharma, S.; Singh, N.; Schwingenschlögl, U. Two-dimensional tellurene as excellent thermoelectric material. ACS. Appl. Energy. Mater. 2018, 1, 1950-4.
43. Peng, H.; Kioussis, N.; Snyder, G. J. Elemental tellurium as a chiral p -type thermoelectric material. Phys. Rev. B. 2014, 89, 195206.
44. Zhou, J.; Zhang, G.; Wang, W.; et al. Phase-engineered synthesis of atomically thin Te single crystals with high on-state currents. Nat. Commun. 2024, 15, 1435.
45. Jeong, U.; Rho, H. Y.; Oh, J. O.; et al. Plasma-engineered high-performance tellurium field-effect phototransistors. Adv. Funct. Mater. 2025, 35, 2421140.
46. Naqi, M.; Choi, K. H.; Yoo, H.; et al. Nanonet: low-temperature-processed tellurium nanowire network for scalable p-type field-effect transistors and a highly sensitive phototransistor array. NPG. Asia. Mater. 2021, 13, 314.
47. Huang, J.; You, C.; Wu, B.; et al. Enhanced photothermoelectric conversion in self-rolled tellurium photodetector with geometry-induced energy localization. Light. Sci. Appl. 2024, 13, 153.
48. Li, L.; Zhao, S.; Ran, W.; et al. Dual sensing signal decoupling based on tellurium anisotropy for VR interaction and neuro-reflex system application. Nat. Commun. 2022, 13, 5975.
49. Wei, X.; Wang, S.; Zhang, N.; et al. Single-orientation epitaxy of quasi-1D tellurium nanowires on M-plane sapphire for highly uniform polarization sensitive short-wave infrared photodetection. Adv. Funct. Mater. 2023, 33, 2300141.
50. Lyu, Z.; Park, M.; Tang, Y.; Choi, H.; Song, S. H.; Lee, H. J. Large-scale green method for synthesizing ultralong uniform tellurium nanowires for semiconductor devices. Nanomaterials 2024, 14, 1625.
51. Hasani, A.; Mohammadzadeh, M. R.; Ghanbari, H.; et al. Self-powered, broadband photodetector based on two-dimensional tellurium-silicon heterojunction. ACS. Omega. 2022, 7, 48383-90.
52. Spirito, D.; Marras, S.; Martín-garcía, B. Lattice dynamics in chiral tellurium by linear and circularly polarized Raman spectroscopy: crystal orientation and handedness. J. Mater. Chem. C. 2024, 12, 2544-51.
53. Dhar, N. K.; Goldsman, N.; Wood, C. E. C. Tellurium desorption kinetics from (112) Si: Si-Te binding energy. Phys. Rev. B. 2000, 61, 8256.
54. Zhou, W.; Kibler, L.; Kolb, D. Evidence for a change in valence state for tellurium adsorbed on a Pt(111) electrode. Electrochim. Acta. 2002, 47, 4501-10.
55. Lim, S.; Kim, T. I.; Park, I.; Kwon, H. Synthesis of a tellurium semiconductor with an organic-inorganic hybrid passivation layer for high-performance p-type thin film transistors. ACS. Appl. Electron. Mater. 2023, 5, 4816-25.
56. Bang, S.; Lee, C.; Choi, D.; et al. High performance p-channel transistor based on amorphous tellurium trioxide. Adv. Mater. 2025, 37, 2504948.
57. Vasileiadis, T.; Yannopoulos, S. N. Photo-induced oxidation and amorphization of trigonal tellurium: a means to engineer hybrid nanostructures and explore glass structure under spatial confinement. J. Appl. Phys. 2014, 116, 103510.
58. Zhang, Y.; Wang, J.; Xie, P.; et al. Molecular reconfiguration of disordered tellurium oxide transistors with biomimetic spectral selectivity. Adv. Mater. 2024, 36, 2412210.
59. Okuyama, K.; Kumagai, Y. Grain growth of evaporated Te films on a heated and cooled substrate. J. Appl. Phys. 1975, 46, 1473-7.
60. Dutton, R.; Muller, R. Electrical properties of tellurium thin films. Proc. IEEE. 1971, 59, 1511-7.
62. Cao, W.; Wang, L.; Xu, H. Selenium/tellurium containing polymer materials in nanobiotechnology. Nano. Today. 2015, 10, 717-36.
63. Huang, H.; Zha, J.; Xu, S.; et al. Precursor-confined chemical vapor deposition of 2D single-crystalline SexTe1-x nanosheets for p-type transistors and inverters. ACS. Nano. 2024, 18, 17293-303.
64. Kim, T.; Kim, M. J.; Lee, H.; et al. Origin of ambipolar behavior in p-type tin monoxide semiconductors: impact of oxygen vacancy defects. IEEE. Trans. Electron. Devices. 2021, 68, 4467-72.
65. Aspiala, M.; Sukhomlinov, D.; Taskinen, P. Standard Gibbs energy of formation of tellurium dioxide measurement by a solid-oxide electrolyte EMF technique. Thermochim. Acta. 2013, 573, 95-100.
66. Willey, T. M.; Bostedt, C.; van Buuren, T.; et al. Observation of quantum confinement in the occupied states of diamond clusters. Phys. Rev. B. 2006, 74, 205432.
67. Jiang, J.; Sun, L.; Gao, B.; et al. Structure dependent quantum confinement effect in hydrogen-terminated nanodiamond clusters. J. Appl. Phys. 2010, 108, 094303.
68. Hu, W.; Li, Z.; Yang, J. Surface and size effects on the charge state of NV center in nanodiamonds. Comput. Theor. Chem. 2013, 1021, 49-53.
69. Chen, Y.; Song, Z.; Liang, H.; et al. Amorphous tellurium-selenium alloy: a promising candidate material toward broadband optoelectronics. Laser. Photon. Rev. 2025, 19, e00586.
70. Qiu, G.; Huang, S.; Segovia, M.; et al. Thermoelectric performance of 2D tellurium with accumulation contacts. Nano. Lett. 2019, 19, 1955-62.
71. Xiang, Y.; Gao, S.; Xu, R.; Wu, W.; Leng, Y. Phase transition in two-dimensional tellurene under mechanical strain modulation. Nano. Energy. 2019, 58, 202-10.
72. Cai, X.; Ren, Y.; Wu, M.; Xu, D.; Luo, X. Strain-induced phase transition and giant piezoelectricity in monolayer tellurene. Nanoscale 2020, 12, 167-72.
73. Qiu, G.; Charnas, A.; Niu, C.; Wang, Y.; Wu, W.; Ye, P. D. The resurrection of tellurium as an elemental two-dimensional semiconductor. npj. 2D. Mater. Appl. 2022, 6, 17.
74. Shi, Z.; Cao, R.; Khan, K.; et al. Two-dimensional tellurium: progress, challenges, and prospects. Nano. Micro. Lett. 2020, 12, 99.
75. Zheng, T.; Yang, M.; Sun, Y.; et al. A solution-fabricated tellurium/silicon mixed-dimensional van der Waals heterojunction for self-powered photodetectors. J. Mater. Chem. C. 2022, 10, 7283-93.
76. Li, L.; Xu, H.; Li, Z.; Liu, L.; Lou, Z.; Wang, L. CMOS-compatible tellurium/silicon ultra-fast near-infrared photodetector. Small 2023, 19, 2303114.
77. Li, L.; Zhang, G.; Younis, M.; et al. 2D tellurium films based self-drive near infrared photodetector. Chemphyschem 2024, 25, e202400383.
78. Choi, T. Y.; Kang, J. H.; Jang, J. H.; Kim, H. K. High-performance flexible 2D tellurium semiconductor grown by isolated plasma soft deposition for wearable and flexible temperature sensors. Small. Methods. 2025, 9, 2500379.
79. Rani, A.; Sultan, M. J.; Ren, W.; et al. Bio-inspired photosensory artificial synapse based on functionalized tellurium multiropes for neuromorphic computing. Small 2024, 20, 2310013.
80. Wang, Y.; Qiu, G.; Wang, R.; et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228-36.
81. Choi, I. J.; Kim, B. J.; Lee, S. H.; et al. Fabrication of a room-temperature NO2 gas sensor using morphology controlled CVD-grown tellurium nanostructures. Sens. Actuators. B. Chem. 2021, 333, 128891.
82. Meng, Y.; Wang, W.; Fan, R.; et al. An inorganic-blended p-type semiconductor with robust electrical and mechanical properties. Nat. Commun. 2024, 15, 4440.
83. Niu, C.; Tan, P.; Lin, J. Y.; et al. First demonstration of BEOL wafer-scale all-ALD channel CFETs using IGZO and Te for monolithic 3D integration. In 2024 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, December, 07-11, 2024; IEEE, 2024, pp. 1-4.
84. Kim, M.; Lee, Y.; Kim, K.; et al. Processes to enable hysteresis-free operation of ultrathin ALD Te p-channel field-effect transistors. Nanoscale. Horiz. 2024, 9, 1990-8.
85. Hu, J.; Wang, B.; Li, X.; et al. Oxygen plasma induced improvement of contact resistance and mobility of tellurium field-effect transistor. Appl. Phys. Lett. 2025, 126, 193101.
86. Jiang, W.; Wang, X.; Chen, Y.; et al. End-bonded contacts of tellurium transistors. ACS. Appl. Mater. Interfaces. 2021, 13, 7766-72.
87. Lin, Z.; Wang, J.; Chen, J.; et al. Two-dimensional tellurene transistors with low contact resistance and self-aligned catalytic thinning process. Adv. Elect. Mater. 2022, 8, 2200380.







