REFERENCES

1. Wang, G.; Lu, Z.; Li, Y.; et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem. Rev. 2021, 121, 6124-72.

2. Zhang, H.; Wei, T.; Zhang, Q.; et al. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J. Mater. Chem. C. 2020, 8, 16648-67.

3. Yang, L.; Kong, X.; Li, F.; et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 2019, 102, 72-108.

4. Adediji, Y. B.; Adeyinka, A. M.; Yahya, D. I.; Mbelu, O. V. A review of energy storage applications of lead-free BaTiO3-based dielectric ceramic capacitors. Energy. Ecol. Environ. 2023, 8, 401-19.

5. Zhao, P.; Wang, H.; Wu, L.; et al. High-performance relaxor ferroelectric materials for energy storage applications. Adv. Energy. Mater. 2019, 9, 1803048.

6. Long, C.; Su, Z.; Xu, A.; et al. Bi0.5Na0.5TiO3-based energy storage ceramics with excellent comprehensive performance by constructing dynamic nanoscale domains and high intrinsic breakdown strength. Nano. Energy. 2024, 124, 109493.

7. Xiong, X.; Liu, H.; Zhang, J.; et al. Ultrahigh energy-storage in dual-phase relaxor ferroelectric ceramics. Adv. Mater. 2024, 36, e2410088.

8. Zheng, Q.; Xie, B.; Wang, Q.; et al. Remarkable energy storage properties in (Bi0.5Na0.5)TiO3-based quasilinear relaxor ferroelectrics via superparaelectric regulation. Chem. Eng. J. 2024, 483, 149154.

9. Wang, W.; Yang, Y.; Qian, J.; et al. Advancing energy storage properties in barium titanate-based relaxor ferroelectric ceramics through a stagewise optimization strategy. Chem. Eng. J. 2024, 488, 151043.

10. Liu, D.; Wang, L.; Wang, X.; et al. Excellent energy storage performances for BaTiO3-based multilayer capacitors through synergistic high-entropy and superparaelectric-relaxor strategy. J. Materiomics. 2025, 11, 100860.

11. Huang, Y.; Shang, K.; Yang, Y.; et al. Ultrahigh energy storage capacities in high-entropy relaxor ferroelectrics. J. Mater. Chem. A. 2024, 12, 18224-33.

12. Gao, Y.; Song, Z.; Hu, H.; et al. Optimizing high-temperature energy storage in tungsten bronze-structured ceramics via high-entropy strategy and bandgap engineering. Nat. Commun. 2024, 15, 5869.

13. Peng, H. A.; Wu, T. T.; Liu, Z.; et al. High-entropy relaxor ferroelectric ceramics for ultrahigh energy storage. Nat. Commun. 2024, 15, 5232.

14. Miracle, D.; Senkov, O. A critical review of high entropy alloys and related concepts. Acta. Mater. 2017, 122, 448-511.

15. Oses, C.; Toher, C.; Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 2020, 5, 295-309.

16. Wu, J.; Tan, H.; Qi, H.; et al. High energy storage performance in BiFeO3-based lead-free high-entropy ferroelectrics. Small 2024, 20, e2400997.

17. Jiao, Y.; Dai, J.; Fan, Z.; et al. Overview of high-entropy oxide ceramics. Mater. Today. 2024, 77, 92-117.

18. Xiang, H.; Xing, Y.; Dai, F.; et al. High-entropy ceramics: present status, challenges, and a look forward. J. Adv. Ceram. 2021, 10, 385-441.

19. Guo, J.; Yu, H.; Ren, Y.; et al. Multi-symmetry high-entropy relaxor ferroelectric with giant capacitive energy storage. Nano. Energy. 2023, 112, 108458.

20. Wang, C.; Cao, W.; Liang, C.; Zhao, H.; Wang, C. Equimolar high-entropy for excellent energy storage performance in Bi0.5Na0.5TiO3-based ceramics. Energy. Storage. Mater. 2024, 70, 103534.

21. Zhu, W.; Shen, Z.; Deng, W.; et al. A review: (Bi,Na)TiO3 (BNT)-based energy storage ceramics. J. Materiomics. 2024, 10, 86-123.

22. Yang, K.; Luo, G.; Ma, L.; et al. Excellent energy storage performance in Bi0.5Na0.5TiO3-based lead-free high-entropy relaxor ferroelectrics via B-site modification. J. Adv. Ceram. 2024, 13, 345-53.

23. Sarkar, A.; Velasco, L.; Wang, D.; et al. High entropy oxides for reversible energy storage. Nat. Commun. 2018, 9, 3400.

24. Luo, H.; Sun, Z.; Zhang, J.; et al. Outstanding energy-storage density together with efficiency of above 90% via local structure design. J. Am. Chem. Soc. 2024, 146, 460-7.

25. Chen, F.; Yang, L.; Feng, H.; et al. An ultrahigh energy storage efficiency and recoverable density in Bi0.5Na0.5TiO3 with the modification of Sr0.85La0.1TiO3 viscous polymer process. J. Materiomics. 2024, 10, 566-77.

26. Che, Z.; Ma, L.; Luo, G.; et al. Phase structure and defect engineering in (Bi0.5Na0.5)TiO3-based relaxor antiferroelectrics toward excellent energy storage performance. Nano. Energy. 2022, 100, 107484.

27. Wang, L. G.; Zhu, C. M.; Jiang, J. B.; et al. Dynamics of the phase transition in Bi0.5Na0.5TiO3 based on in situ Raman spectroscopy. J. Mater. Chem. C. 2023, 11, 13459-65.

28. Zhao, H.; Cao, W.; Liang, C.; Wang, C.; Wang, C.; Cheng, Z. High-entropy design toward ultrahigh energy storage density under moderate electric field in bulk lead-free ceramics. Adv. Funct. Mater. 2025, 35, 2411954.

29. Ma, L.; Che, Z.; Xu, C.; et al. High energy storage density and efficiency in AgNbO3 based relaxor antiferroelectrics with reduced silver content. J. Eur. Ceram. Soc. 2023, 43, 3228-35.

30. Yao, Z.; Song, Z.; Hao, H.; et al. Homogeneous/Inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 2017, 29, 1601727.

31. Yu, Z.; Ang, C.; Guo, R.; Bhalla, A. S. Ferroelectric-relaxor behavior of Ba(Ti0.7Zr0.3)O3 ceramics. J. Appl. Phys. 2002, 92, 2655-7.

32. Ang, C.; Jing, Z.; Yu, Z. Ferroelectric relaxor Ba(Ti,Ce)O3. J. Phys. Condens. Matter. 2002, 14, 8901-12.

33. Subrahmanyam, S.; Goo, E. Diffuse phase transitions in the (PbxBa1-x)TiO3 system. J. Mater. Sci. 1998, 33, 4085-8.

34. Bokov, A. A. Recent advances in diffuse ferroelectric phase transitions. Ferroelectrics 1992, 131, 49-55.

35. Chen, Z.; Pu, Y.; Ning, Y.; et al. Remarkable energy storage capability and dielectric temperature stability in (Na0.5Bi0.5)TiO3-based medium entropy superparaelectrics. Chem. Eng. J. 2024, 481, 148796.

36. Luo, G.; Zhuang, D.; Yang, K.; et al. Enhanced comprehensive energy storage properties in NaNbO3-based relaxor antiferroelectric via MnO2 modification. J. Mater. Sci. Mater. Electron. 2023, 34, 10784.

37. Liu, L.; Huang, Y.; Su, C.; et al. Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3 at high temperatures. Appl. Phys. A. 2011, 104, 1047-51.

38. Li, W.; Xu, J.; Chen, J.; et al. Boosting energy storage performance with lead-free relaxor ferroelectric in BNT-based ceramics via introducing scheelite La2WTiO8. J. Mater. Chem. A. 2024, 12, 29044-53.

39. Liu, C.; Zhang, H.; Gao, P.; et al. Boosting energy storage performance in Na0.5Bi0.5TiO3-based lead-free ceramics modified by a synergistic design. Ceram. Int. 2024, 50, 5198-209.

40. Tang, L.; Yu, Z.; Pan, Z.; et al. Giant energy storage density with antiferroelectric-like properties in BNT-based ceramics via phase structure engineering. Small 2023, 19, e2302346.

41. Tang, X.; Hu, Z.; Koval, V.; Yang, B.; Smith, G. C.; Yan, H. Energy storage properties of samarium-doped bismuth sodium titanate-based lead-free ceramics. Chem. Eng. J. 2023, 473, 145363.

42. Dong, Q.; Pan, Y.; Chen, X.; Li, X.; Zhou, H. Mechanism of enhanced relaxor ability and high intrinsic electric field of NaNbO3-based antiferroelectric ceramics based on defect engineering design. J. Energy. Storage. 2024, 101, 113599.

43. Meng, X.; Yang, Z.; Yuan, Y.; Tang, B.; Zhang, S. Superior energy-storage performances achieved in NaNbO3-based antiferroelectric ceramics by phase-structure and relaxation regulation. Chem. Eng. J. 2023, 477, 147097.

44. Wang, Z.; Li, D.; Liu, W.; et al. Improved energy storage properties achieved in NaNbO3-based relaxor antiferroelectric ceramics via anti-parallel polar nanoregion design. J. Mater. Chem. A. 2024, 12, 19551-8.

45. Xie, A.; Chen, J.; Zuo, J.; et al. Excellent energy-storage performance of (0.85-x)NaNbO3-xNaSbO3-0.15(Na0.5La0.5)TiO3 antiferroelectric ceramics through B-site Sb5+ driven phase transition. Acs. Appl. Mater. Inter. 2023, 15, 22301-9.

46. Yang, L.; Kong, X.; Cheng, Z.; Zhang, S. Enhanced energy storage performance of sodium niobate-based relaxor dielectrics by a ramp-to-spike sintering profile. ACS. Appl. Mater. Interfaces. 2020, 12, 32834-41.

47. Zhai, X.; Lu, M.; Du, J.; et al. Improved energy storage performance in NaNbO3-based ceramics via synergetic phase regulation and enhanced relaxation. J. Eur. Ceram. Soc. 2025, 45, 117151.

48. Gao, J.; Zhang, Y.; Zhao, L.; et al. Enhanced antiferroelectric phase stability in La-doped AgNbO3: perspectives from the microstructure to energy storage properties. J. Mater. Chem. A. 2019, 7, 2225-32.

49. Luo, N.; Han, K.; Cabral, M. J.; et al. Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency. Nat. Commun. 2020, 11, 4824.

50. Luo, N.; Han, K.; Zhuo, F.; et al. Correction: aliovalent a-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density. J. Mater. Chem. A. 2019, 7, 15450-15450.

51. Wang, H.; Yao, Y.; Wang, J.; Zhu, L.; Zhao, L. High energy density and energy efficiency in AgNbO3-based multilayer ceramic capacitors induced by coexisted antiferroelectric and paraelectric phases. Ceram. Int. 2024, 50, 53610-7.

52. Yang, Y.; Zha, J.; Lu, X.; Huang, F.; Ying, X.; Zhu, J. Excellent energy storage performance of Nd-modified lead-free AgNbO3 ceramics via triple collaborative optimization. Nano. Energy. 2024, 131, 110242.

53. Zhao, M.; Wang, J.; Yuan, H.; Zheng, Z.; Zhao, L. Energy storage performance and phase transition under high electric field in Na/Ta co-doped AgNbO3 ceramics. J. Materiomics. 2023, 9, 19-26.

54. Zhou, Y.; Gao, S.; Huang, J.; et al. Realizing simultaneously excellent energy storage and discharge properties in AgNbO3 based antiferroelectric ceramics via La3+ and Ta5+ co-substitution strategy. J. Materiomics. 2023, 9, 410-21.

55. Huang, Y.; Zhao, C.; Wu, B.; Wu, J. Multifunctional BaTiO3-based relaxor ferroelectrics toward excellent energy storage performance and electrostrictive strain benefiting from crossover region. ACS. Appl. Mater. Interfaces. 2020, 12, 23885-95.

56. Lin, Y.; Li, D.; Zhang, M.; et al. Excellent energy-storage properties achieved in BaTiO3-based lead-free relaxor ferroelectric ceramics via domain engineering on the nanoscale. ACS. Appl. Mater. Interfaces. 2019, 11, 36824-30.

57. Qin, W.; Zhao, M.; Li, Z.; et al. High energy storage and thermal stability under low electric field in Bi0.5Na0.5TiO3-modified BaTiO3-Bi(Zn0.25Ta0.5)O3 ceramics. Chem. Eng. J. 2022, 443, 136505.

58. Si, F.; Tang, B.; Fang, Z.; Li, H.; Zhang, S. A new type of BaTiO3-based ceramics with Bi(Mg1/2Sn1/2)O3 modification showing improved energy storage properties and pulsed discharging performances. J. Alloy. Compd. 2020, 819, 153004.

59. Song, Y.; Zhang, M.; Lan, S.; et al. High-temperature BaTiO3-based ceramic capacitors by entropy engineering design. J. Adv. Ceram. 2024, 13, 1498-504.

60. Yang, S.; Zeng, D.; Dong, Q.; et al. Enhancement of energy storage performances in BaTiO3-based ceramics via introducing Bi(Mg2/3Sb1/3)O3. J. Energy. Storage. 2024, 78, 110102.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/