REFERENCES

1. Rappaport, T. S.; Sun, S.; Mayzus, R.; et al. Millimeter wave mobile communications for 5G cellular: It will work! IEEE. Access. 2013, 1, 335-49.

2. Sebastian, M. T.; Ubic, R.; Jantunen, H. Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 2015, 60, 392-412.

3. Raveendran, A.; Sebastian, M. T.; Raman, S. Applications of microwave materials: a review. J. Electron. Mater. 2019, 48, 2601-34.

4. Li, L.; Zhu, X. L.; Chen, X. M. Where can the low dielectric constant go in dense inorganic materials? J. Materiomics. 2023, 9, 980-3.

5. Reaney, I. M.; Iddles, D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. Soc. 2006, 89, 2063-72.

6. Došler, U.; Kržmanc, M. M.; Suvorov, D. The synthesis and microwave dielectric properties of Mg3B2O6 and Mg2B2O5 ceramics. J. Eur. Ceram. Soc. 2010, 30, 413-8.

7. Chang, S.; Pai, H.; Tseng, C.; Tsai, C. Microwave dielectric properties of ultra-low temperature fired Li3BO3 ceramics. J. Alloy. Compd. 2017, 698, 814-8.

8. Zhou, D.; Pang, L.; Wang, D.; Qi, Z.; Reaney, I. M. High quality factor, ultralow sintering temperature Li6B4O9 microwave dielectric ceramics with ultralow density for antenna substrates. ACS. Sustain. Chem. Eng. 2018, 6, 11138-43.

9. Sun, H.; Zhang, Q.; Yang, H.; Zou, J. (Ca1-xMgx)SiO3: a low-permittivity microwave dielectric ceramic system. Mater. Sci. Eng. B. 2007, 138, 46-50.

10. Bian, J.; Xie, Y. Sintering behavior and dielectric properties of SiO2-BPO4 glass-fluxed ceramics. J. Eur. Ceram. Soc. 2018, 38, 2747-52.

11. Kamutzki, F.; Schneider, S.; Barowski, J.; Gurlo, A.; Hanaor, D. A. Silicate dielectric ceramics for millimetre wave applications. J. Eur. Ceram. Soc. 2021, 41, 3879-94.

12. Hou, H.; Zhang, A.; Yang, H.; et al. LiGaSiO4: an ultra-low permittivity dielectric material enabling application in patch antenna. Ceram. Int. 2024, 50, 7758-66.

13. Surendran, K.; Bijumon, P.; Mohanan, P.; Sebastian, M. (1-x)MgAl2O4-xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys. A. 2005, 81, 823-6.

14. Wan Jalal, W. N.; Abdullah, H.; Zulfakar, M. S.; Bais, B.; Shaari, S.; Islam, M. T. ZnAl2O4-based microwave dielectric ceramics as GPS patch antenna: a review. Trans. Indian. Ceram. Soc. 2013, 72, 215-24.

15. Xie, M.; Li, X.; Lai, Y.; et al. Phase evolution and microware dielectric properties of high-entropy spinel-type (Mg0.2Co0.2Ni0.2Li0.4Zn0.2)Al2O4 ceramics. J. Eur. Ceram. Soc. 2024, 44, 284-92.

16. Bian, J. J.; Kim, D. W.; Hong, K. S. Microwave dielectric properties of A2P2O7 (A = Ca, Sr, Ba; Mg, Zn, Mn). Jpn. J. Appl. Phys. 2004, 43, 3521.

17. Thomas, D.; Abhilash, P.; Sebastian, M. T. Casting and characterization of LiMgPO4 glass free LTCC tape for microwave applications. J. Eur. Ceram. Soc. 2013, 33, 87-93.

18. Bian, J.; Sun, X.; Xie, Y. Structural evolution, sintering behavior and microwave dielectric properties of Al(1-x)(Si0.5Zn0.5)xPO4 ceramics. J. Eur. Ceram. Soc. 2019, 39, 4139-43.

19. Zhou, D.; Randall, C. A.; Wang, H.; Pang, L.; Yao, X. Microwave dielectric ceramics in Li2O-Bi2O3-MoO3 system with ultra-low sintering temperatures. J. Am. Ceram. Soc. 2010, 93, 1096-100.

20. Varghese, J.; Siponkoski, T.; Nelo, M.; Sebastian, M. T.; Jantunen, H. Microwave dielectric properties of low-temperature sinterable α-MoO3. J. Eur. Ceram. Soc. 2018, 38, 1541-7.

21. Song, X.; Du, K.; Li, J.; et al. Low-fired fluoride microwave dielectric ceramics with low dielectric loss. Ceram. Int. 2019, 45, 279-86.

22. Krupka, J.; Derzakowski, K.; Tobar, M.; Hartnett, J.; Geyer, R. G. Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures. Meas. Sci. Technol. 1999, 10, 387-92.

23. Li, L.; Fang, Y.; Xiao, Q.; Wu, Y. J.; Wang, N.; Chen, X. M. Microwave dielectric properties of fused silica prepared by different approaches. Int. J. Appl. Ceram. Technol. 2014, 11, 193-9.

24. Akkasoglu, U.; Sengul, S.; Arslan, İ.; Ozturk, B.; Cicek, B. Structural, thermal and dielectric properties of low-alkali borosilicate glasses for electronic applications. J. Mater. Sci. Mater. Electron. 2021, 32, 22629-36.

25. Wu, S.; Song, K.; Liu, P.; et al. Effect of TiO2 doping on the structure and microwave dielectric properties of cordierite ceramics. J. Am. Ceram. Soc. 2015, 98, 1842-7.

26. Lou, W.; Mao, M.; Song, K.; et al. Low permittivity cordierite-based microwave dielectric ceramics for 5G/6G telecommunications. J. Eur. Ceram. Soc. 2022, 42, 2820-6.

27. Penn, S. J.; Alford, N. M.; Templeton, A.; et al. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 1997, 80, 1885-8.

28. Jin, F.; Tong, H.; Shen, L.; Wang, K.; Chu, P. K. Micro-structural and dielectric properties of porous TiO2 films synthesized on titanium alloys by micro-arc discharge oxidization. Mater. Chem. Phys. 2006, 100, 31-3.

29. Xia, Y.; Zeng, Y.; Jiang, D. Dielectric and mechanical properties of porous Si3N4 ceramics prepared via low temperature sintering. Ceram. Int. 2009, 35, 1699-703.

30. Hou, Z.; Ye, F.; Liu, L. Effects of pore shape and porosity on the dielectric constant of porous β-SiAlON ceramics. J. Eur. Ceram. Soc. 2015, 35, 4115-20.

31. Chen, Y.; Guo, W.; Luo, Y.; Ma, Z.; Zhang, L.; Yue, Z. Microwave and terahertz properties of porous Ba4(Sm,Nd,Bi)28/3Ti18O54 ceramics obtained by sacrificial template method. J. Am. Ceram. Soc. 2021, 104, 5679-88.

32. Cao, M.; Li, L.; Wu, S. Y.; Chen, X. M. Dominant role of ceramic connectivity in microwave dielectric properties of porous ceramics. Acta. Mater. 2023, 258, 119207.

33. Xu, Y.; Tsai, Y.; Tu, K. N.; et al. Dielectric property and microstructure of a porous polymer material with ultralow dielectric constant. Appl. Phys. Lett. 1999, 75, 853-5.

34. Dong, X.; Hu, Y.; Zhao, J.; Wu, Y. Method to predict effective dielectric constant of porous silica low dielectric constant materials. Phys. B. 2010, 405, 3551-4.

35. Luo, W.; Guo, J.; Randall, C.; Lanagan, M. Effect of porosity and microstructure on the microwave dielectric properties of rutile. Mater. Lett. 2017, 200, 101-4.

36. Meng, F.; Fu, Z.; Zhang, J.; et al. Study on the structure and properties of fine-grained alumina fast sintered with high heating rate. Mater. Res. Bull. 2008, 43, 3521-8.

37. Li, L.; Deng, Y.; Chen, G. Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries. J. Energy. Chem. 2020, 50, 154-77.

38. Levassort, F.; Lethiecq, M.; Desmare, R.; Hue, T. H. Effective electroelastic moduli of 3-3(0-3) piezocomposites. IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 1999, 46, 1028-34.

39. Cao, M.; Yan, X. J.; Li, L.; Wu, S. Y.; Chen, X. M. Obtaining greatly improved dielectric constant in BaTiO3-epoxy composites with low ceramic volume fraction by enhancing the connectivity of ceramic phase. ACS. Appl. Mater. Interfaces. 2022, 14, 7039-51.

40. Alford, N. M.; Penn, S. J. Sintered alumina with low dielectric loss. J. Appl. Phys. 1996, 80, 5895-8.

41. Penn, S.; Poole, M.; Breeze, J.; Alford, N. Layered Al2O3-TiO2 composite dielectric resonators with tuneable temperature coefficient for microwave applications. IEE. Proc. Sci. Meas. Technol. 2000, 147, 269-73.

42. Kolodiazhnyi, T.; Annino, G.; Spreitzer, M.; et al. Development of Al2O3-TiO2Al2O3-TiO2 composite ceramics for high-power millimeter-wave applications. Acta. Mater. 2009, 57, 3402-9.

43. Mollá, J.; González, M.; Vila, R.; Ibarra, A. Effect of humidity on microwave dielectric losses of porous alumina. J. Appl. Phys. 1999, 85, 1727-30.

44. Kajfez, D.; Gundavajhala, A. Measurement of material properties with a tunable resonant cavity. Electron. Lett. 1993, 29, 1936-7.

45. Zakri, T.; Laurent, J.; Vauclin, M. Theoretical evidence for `Lichtenecker's mixture formulae' based on the effective medium theory. J. Phys. D. Appl. Phys. 1998, 31, 1589-94.

46. Stroud, D. Generalized effective-medium approach to the conductivity of an inhomogeneous material. Phys. Rev. B. 1975, 12, 3368-73.

47. Heidinger, R.; Nazare, S. Influence of porosity on the dielectric properties of AlN in the range of 30. 40 GHz. Powder. Metall. Int. 1988, 20, 30-2. Available from: https://www.osti.gov/etdeweb/biblio/6526366 [Last accessed on 6 May 2025]

48. Bosman, A. J.; Havinga, E. E. Temperature dependence of dielectric constants of cubic ionic compounds. Phys. Rev. 1963, 129, 1593-600.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/