REFERENCES
1. Yi, H.; Huang, D.; Qin, L.; et al. Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production. Appl. Catal. B. Environ. 2018, 239, 408-24.
2. Dong, W.; Xiao, H.; Jia, Y.; et al. Engineering the defects and microstructures in ferroelectrics for enhanced/novel properties: an emerging way to cope with energy crisis and environmental pollution. Adv. Sci. 2022, 9, e2105368.
3. Xia, M.; zhang, Y.; Xiao, J.; et al. Magnetic field induced synthesis of (Ni, Zn)Fe2O4 spinel nanorod for enhanced alkaline hydrogen evolution reaction. Prog. Nat. Sci. Mater. Int. 2023, 33, 172-7.
4. Wang, S.; Li, Y.; Liu, Q.; et al. Photo-/electro-/piezo-catalytic elimination of environmental pollutants. J. Photochem. Photobiol. A. Chem. 2023, 437, 114435.
5. Zhang, X.; Wu, X.; Zhang, J.; Xu, H.; Yu, X. Recent progress in graphitic carbon nitride-based materials for antibacterial applications: synthesis, mechanistic insights, and utilization. Microstructures 2024, 4, 2024017.
6. Pyser, J. B.; Chakrabarty, S.; Romero, E. O.; Narayan, A. R. H. State-of-the-art biocatalysis. ACS. Cent. Sci. 2021, 7, 1105-16.
7. Li, J.; Liu, X.; Zhao, G.; et al. Piezoelectric materials and techniques for environmental pollution remediation. Sci. Total. Environ. 2023, 869, 161767.
8. Hao, A.; Ning, X.; Liu, X.; Zhan, L.; Qiu, X. Phosphorus heteroatom doped BiOCl as efficient catalyst for photo-piezocatalytic degradation of organic pollutant and unveiling the mechanism: experiment and DFT calculation. Chem. Eng. J. 2024, 499, 155823.
9. Xu, Y.; Meng, Y.; Xiang, X.; et al. Modulating low-frequency tribocatalytic performance through defects in uni-doped and bi-doped SrTiO3. J. Adv. Ceram. 2024, 13, 1153-63.
10. Liang, Z.; Yan, C.; Rtimi, S.; Bandara, J. Piezoelectric materials for catalytic/photocatalytic removal of pollutants: recent advances and outlook. Appl. Catal. B. Environ. 2019, 241, 256-69.
11. Dai, J.; Fan, Z.; Xie, H.; et al. Versatile BiFeO3 shining in piezocatalysis: from materials engineering to diverse applications. J. Adv. Ceram. 2025, 14, 9221046.
12. Liu, N.; Wang, R.; Zhao, J.; Jiang, J.; Fan, F. R. Piezoelectricity and triboelectricity enhanced catalysis. Nano. Res. Energy. 2024, 3, e9120137.
13. Tu, S.; Guo, Y.; Zhang, Y.; et al. Piezocatalysis and piezo-photocatalysis: catalysts classification and modification strategy, reaction mechanism, and practical application. Adv. Funct. Mater. 2020, 30, 2005158.
14. Liu, J.; Qi, W.; Xu, M.; Thomas, T.; Liu, S.; Yang, M. Piezocatalytic techniques in environmental remediation. Angew. Chem. Int. Ed. 2023, 62, e202213927.
15. Sudrajat, H.; Rossetti, I.; Carra, I.; Colmenares, J. C. Piezocatalytic reduction: an emerging research direction with bright prospects. Curr. Opin. Chem. Eng. 2024, 45, 101043.
16. Wang, C.; Hu, C.; Chen, F.; Ma, T.; Zhang, Y.; Huang, H. Design strategies and effect comparisons toward efficient piezocatalytic system. Nano. Energy. 2023, 107, 108093.
17. Starr, M. B.; Wang, X. Coupling of piezoelectric effect with electrochemical processes. Nano. Energy. 2015, 14, 296-311.
18. Su, C.; Li, C.; Wang, W. Efficient piezocatalytic activation of peroxydisulfate over Bi2Fe4O9: thickness-dependent synergy effect between peroxydisulfate activation and piezocatalysis. Rare. Met. 2023, 42, 4005-14.
19. Hong, K.; Xu, H.; Konishi, H.; Li, X. Direct water splitting through vibrating piezoelectric microfibers in water. J. Phys. Chem. Lett. 2010, 1, 997-1002.
20. Hong, K.; Xu, H.; Konishi, H.; Li, X. Piezoelectrochemical effect: a new mechanism for azo dye decolorization in aqueous solution through vibrating piezoelectric microfibers. J. Phys. Chem. C. 2012, 116, 13045-51.
21. Ali, A.; Chen, L.; Nasir, M. S.; Wu, C.; Guo, B.; Yang, Y. Piezocatalytic removal of water bacteria and organic compounds: a review. Environ. Chem. Lett. 2023, 21, 1075-92.
22. Zhou, L. L.; Yang, T.; Wang, K.; et al. Efficient piezo-catalytic dye degradation using piezoelectric 6H-SiC under harsh conditions. Rare. Met. 2024, 43, 3173-84.
23. Karmakar, S.; Pramanik, A.; Kole, A. K.; Chatterjee, U.; Kumbhakar, P. Syntheses of flower and tube-like MoSe2 nanostructures for ultrafast piezocatalytic degradation of organic dyes on cotton fabrics. J. Hazard. Mater. 2022, 424, 127702.
24. Chen, L.; Dai, X.; Li, X.; et al. A novel Bi2S3/KTa0.75Nb0.25O3 nanocomposite with high efficiency for photocatalytic and piezocatalytic N2 fixation. J. Mater. Chem. A. 2021, 9, 13344-54.
25. Hu, J.; Zhao, R.; Ni, J.; et al. Enhanced ferroelectric polarization in Au@BaTiO3 yolk-in-shell nanostructure for synergistic boosting visible-light- piezocatalytic CO2 reduction. Adv. Sci. 2024, 11, e2410357.
26. Fan, F.; Xie, S.; Wang, G.; Tian, Z. Tribocatalysis: challenges and perspectives. Sci. China. Chem. 2021, 64, 1609-13.
27. Che, J.; Gao, Y.; Wu, Z.; et al. Review on tribocatalysis through harvesting friction energy for mechanically-driven dye decomposition. J. Alloys. Compd. 2024, 1002, 175413.
28. Zhao, B.; Chen, N.; Xue, Y.; et al. Challenges and perspectives of tribocatalysis in the treatment for dye wastewater. J. Water. Proc. Eng. 2024, 63, 105455.
29. Trinh, Q. T.; Golio, N.; Cheng, Y.; et al. Sonochemistry and sonocatalysis: current progress, existing limitations, and future opportunities in green and sustainable chemistry. Green. Chem. 2025, 27, 4926-58.
30. Pickhardt, W.; Grätz, S.; Borchardt, L. Direct mechanocatalysis: using milling balls as catalysts. Chemistry 2020, 26, 12903-11.
31. Jia, P.; Li, J.; Huang, H. Piezocatalysts and piezo-photocatalysts: from material design to diverse applications. Adv. Funct. Mater. 2024, 34, 2407309.
32. Wang, K.; Han, C.; Li, J.; Qiu, J.; Sunarso, J.; Liu, S. The mechanism of piezocatalysis: energy band theory or screening charge effect? Angew. Chem. Int. Ed. 2022, 61, e202110429.
33. Xu, X.; Wang, Y.; Cheng, W.; et al. Recent advances in piezocatalytic hydrogen production and prospects. Surf. Interfaces. 2024, 54, 105245.
34. Liu, Y.; Zhang, Y.; Yang, Q.; Niu, S.; Wang, Z. Fundamental theories of piezotronics and piezo-phototronics. Nano. Energy. 2015, 14, 257-75.
35. Tu, S.; Huang, H.; Zhang, T.; Zhang, Y. Controllable synthesis of multi-responsive ferroelectric layered perovskite-like Bi4Ti3O12: photocatalysis and piezoelectric-catalysis and mechanism insight. Appl. Catal. B. Environ. 2017, 219, 550-62.
36. Tian, W.; Qiu, J.; Li, N.; et al. Efficient piezocatalytic removal of BPA and Cr(VI) with SnS2/CNFs membrane by harvesting vibration energy. Nano. Energy. 2021, 86, 106036.
37. Jiang, Y.; Liang, J.; Zhuo, F.; et al. Unveiling mechanically driven catalytic processes: beyond piezocatalysis to synergetic effects. ACS. Nano. 2025, 19, 18037-74.
38. Du, Y.; Sun, W.; Li, X.; et al. Mechanocatalytic hydrogen generation in centrosymmetric barium dititanate. Adv. Sci. 2024, 11, e2404483.
39. Li, X.; Tong, W.; Shi, J.; Chen, Y.; Zhang, Y.; An, Q. Tribocatalysis mechanisms: electron transfer and transition. J. Mater. Chem. A. 2023, 11, 4458-72.
40. Kajdas, C. K. Importance of the triboemission process for tribochemical reaction. Tribol. Int. 2005, 38, 337-53.
41. Hu, C.; Huang, H. Advances in piezoelectric polarization enhanced photocatalytic energy conversion. Acta. Phys. Chim. Sin. 2023, 2212048.
42. Li, L.; Kang, P.; Feng, D.; et al. High temperature liquid shock manufacturing of RuNi catalysts for hydrogen evolution reaction. Prog. Nat. Sci. Mater. Int. 2024, 34, 985-9.
43. Zhang, B.; Sun, B.; Liu, F.; Gao, T.; Zhou, G. TiO2-based S-scheme photocatalysts for solar energy conversion and environmental remediation. Sci. China. Mater. 2024, 67, 424-43.
44. Brereton, K. R.; Bonn, A. G.; Miller, A. J. M. Molecular photoelectrocatalysts for light-driven hydrogen production. ACS. Energy. Lett. 2018, 3, 1128-36.
45. Sun, Y.; Li, X.; Vijayakumar, A.; et al. Hydrogen generation and degradation of organic dyes by new piezocatalytic 0.7BiFeO3-
46. Chen, Z.; Liu, W.; Zheng, L.; et al. Enhancing production of hydrogen and simultaneous degradation of ciprofloxacin over Sn doped SrTiO3 piezocatalyst. Sep. Purif. Technol. 2025, 353, 128307.
47. You, H.; Wu, Z.; Zhang, L.; et al. Harvesting the vibration energy of BiFeO3 nanosheets for hydrogen evolution. Angew. Chem. Int. Ed. 2019, 58, 11779-84.
48. Xu, X.; Xiao, L.; Wu, Z.; et al. Harvesting vibration energy to piezo-catalytically generate hydrogen through Bi2WO6 layered-perovskite. Nano. Energy. 2020, 78, 105351.
49. Ning, X.; Jia, D.; Li, S.; Khan, M. F.; Hao, A. Oxygen-incorporated MoS2 catalyst for remarkable enhancing piezocatalytic H2 evolution and degradation of organic pollutant. Rare. Met. 2023, 42, 3034-45.
50. Mondal, S.; Dilly Rajan, K.; Patra, L.; Rathinam, M.; Ganesh, V. Sulfur vacancy-induced enhancement of piezocatalytic H2 production in MoS2. Small 2025, 21, e2411828.
51. Chou, T.; Chan, S.; Lin, Y.; et al. A highly efficient Au-MoS2 nanocatalyst for tunable piezocatalytic and photocatalytic water disinfection. Nano. Energy. 2019, 57, 14-21.
52. Zhao, S.; Liu, M.; Zhang, Y.; et al. Harvesting mechanical energy for hydrogen generation by piezoelectric metal-organic frameworks. Mater. Horiz. 2022, 9, 1978-83.
53. Su, P.; Kong, D.; Zhao, H.; et al. SnFe2O4/ZnIn2S4/PVDF piezophotocatalyst with improved photocatalytic hydrogen production by synergetic effects of heterojunction and piezoelectricity. J. Adv. Ceram. 2023, 12, 1685-700.
54. Wang, J.; Hu, C.; Zhang, Y.; Huang, H. Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution. Chin. J. Catal. 2022, 43, 1277-85.
55. Zhan, L.; Hu, J.; Cao, Y.; et al. Ce-regulating defect and morphology engineering for efficiently enhancing the piezocatalytic performances of BiOBr. Chem. Commun. 2024, 60, 1892-5.
56. Qiu, X.; Xie, J.; Ning, X.; et al. Enhancing the piezocatalytic performance for H2 evolution by constructing BiOCl/UiO-66 heterostructure. Appl. Surf. Sci. 2024, 670, 160694.
57. Du, Y.; Lu, T.; Li, X.; et al. High-efficient piezocatalytic hydrogen evolution by centrosymmetric Bi2Fe4O9 nanoplates. Nano. Energy. 2022, 104, 107919.
58. Lei, R.; Gao, F.; Yuan, J.; et al. Free layer-dependent piezoelectricity of oxygen-doped MoS2 for the enhanced piezocatalytic hydrogen evolution from pure water. Appl. Surf. Sci. 2022, 576, 151851.
59. Li, Y.; Li, L.; Liu, F.; et al. Robust route to H2O2 and H2 via intermediate water splitting enabled by capitalizing on minimum vanadium-doped piezocatalysts. Nano. Res. 2022, 15, 7986-93.
60. Lei, R.; Fu, X.; Chen, N.; Chen, Y.; Feng, W.; Liu, P. Cocatalyst engineering to weaken the charge screening effect over
61. Ma, Y.; Wang, B.; Zhong, Y.; et al. Bifunctional RbBiNb2O7/poly(tetrafluoroethylene) for high-efficiency piezocatalytic hydrogen and hydrogen peroxide production from pure water. Chem. Eng. J. 2022, 446, 136958.
62. He, Y.; Tian, N.; An, Y.; Sun, R.; Zhang, Y.; Huang, H. Morphology regulation and oxygen vacancy construction synergistically boosting the piezocatalytic degradation and pure water splitting of SrTiO3. Small 2024, 20, e2407624.
63. Ma, X.; Gao, Y.; Yang, B.; et al. Enhanced charge separation in La2NiO4 nanoplates by coupled piezocatalysis and photocatalysis for efficient H2 evolution. Nanoscale 2022, 14, 7083-95.
64. Hu, C.; Chen, F.; Wang, Y.; et al. Exceptional cocatalyst-free photo-enhanced piezocatalytic hydrogen evolution of carbon nitride nanosheets from strong in-plane polarization. Adv. Mater. 2021, 33, e2101751.
65. Wang, M.; Zuo, Y.; Wang, J.; et al. Remarkably enhanced hydrogen generation of organolead halide perovskites via piezocatalysis and photocatalysis. Adv. Energy. Mater. 2019, 9, 1901801.
66. Zhao, Q.; Xiao, H.; Huangfu, G.; et al. Highly-efficient piezocatalytic performance of nanocrystalline BaTi0.89Sn0.11O3 catalyst with Tc near room temperature. Nano. Energy. 2021, 85, 106028.
67. Yu, C.; He, J.; Tan, M.; et al. Selective enhancement of photo-piezocatalytic performance in BaTiO3 via heterovalent ion doping. Adv. Funct. Mater. 2022, 32, 2209365.
68. Zhou, H.; Cao, J.; Ji, Y.; Xia, M.; Yao, W. Twin boundaries-induced centrosymmetric breaking of hollow CaTiO3 nanocuboids for piezocatalytic hydrogen evolution. Small 2024, 20, e2402679.
69. Tang, Q.; Wu, J.; Kim, D.; et al. Enhanced piezocatalytic performance of BaTiO3 nanosheets with highly exposed {001} facets. Adv. Funct. Mater. 2022, 32, 2202180.
70. Wang, Y.; Wu, J. M. Effect of controlled oxygen vacancy on H2-production through the piezocatalysis and piezophototronics of ferroelectric R3C ZnSnO3 nanowires. Adv. Funct. Mater. 2020, 30, 1907619.
71. Ma, J.; Xia, L.; Ruan, L.; et al. Sacrificial agent effect in piezo-electrocatalytic hydrogen evolution. Appl. Phys. Lett. 2023, 122, 203902.
72. Su, R.; Hsain, H. A.; Wu, M.; et al. Nano-ferroelectric for high efficiency overall water splitting under ultrasonic vibration. Angew. Chem. Int. Ed. 2019, 58, 15076-81.
73. Feng, W.; Yuan, J.; Zhang, L.; et al. Atomically thin ZnS nanosheets: facile synthesis and superior piezocatalytic H2 production from pure H2O. Appl. Catal. B. Environ. 2020, 277, 119250.
74. Feng, W.; Yuan, J.; Gao, F.; et al. Piezopotential-driven simulated electrocatalytic nanosystem of ultrasmall MoC quantum dots encapsulated in ultrathin N-doped graphene vesicles for superhigh H2 production from pure water. Nano. Energy. 2020, 75, 104990.
75. Tian, J.; Li, J.; Guo, Y.; Liu, Z.; Liu, B.; Li, J. Oxygen vacancy mediated bismuth-based photocatalysts. Adv. Powder. Mater. 2024, 3, 100201.
76. Zhang, Y.; Feng, K.; Song, M.; et al. Dislocation-engineered piezocatalytic water splitting in single-crystal BaTiO3. Energy. Environ. Sci. 2025, 18, 602-12.
77. Ning, X.; Hao, A.; Cao, Y.; et al. Construction of MXene/Bi2WO6 schottky junction for highly efficient piezocatalytic hydrogen evolution and unraveling mechanism. Nano. Lett. 2024, 24, 3361-8.
78. Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.
79. Zhang, K.; Sun, X.; Wang, H.; Ma, Y.; Huang, H.; Ma, T. Interfacial engineering of Bi2MoO6-BaTiO3 type-I heterojunction promotes cocatalyst-free piezocatalytic H2 production. Nano. Energy. 2024, 121, 109206.
80. Shi, M.; Wu, X.; Zhao, Y.; Li, R.; Li, C. Unlocking the key to photocatalytic hydrogen production using electronic mediators for
81. Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Emerging S-scheme photocatalyst. Adv. Mater. 2022, 34, e2107668.
82. Wang, Y.; Chen, Y.; Cheng, J.; et al. Acid-engineering combined heterojunction formation for high efficient piezo-catalytic FeCo-LDH@ZnO. Nano. Energy. 2025, 144, 111333.
83. Lee, G.; Lyu, L.; Hsiao, K.; et al. Induction of a piezo-potential improves photocatalytic hydrogen production over ZnO/ZnS/MoS2 heterostructures. Nano. Energy. 2022, 93, 106867.
84. Fu, Y.; Wang, Y.; Zhao, H.; et al. Synthesis of ternary ZnO/ZnS/MoS2 piezoelectric nanoarrays for enhanced photocatalytic performance by conversion of dual heterojunctions. Appl. Surf. Sci. 2021, 556, 149695.
85. Kuru, T.; Sarilmaz, A.; Aslan, E.; Ozel, F.; Hatay Patir, I. Rational design of ZnO/SrTiO3 S-scheme heterojunction for photo-enhanced piezocatalytic hydrogen production. Appl. Surf. Sci. 2025, 682, 161704.
86. Xu, M. L.; Lu, M.; Qin, G. Y.; et al. Piezo-photocatalytic synergy in BiFeO3@COF Z-scheme heterostructures for high-efficiency overall water splitting. Angew. Chem. Int. Ed. 2022, 61, e202210700.
87. Hao, P.; Cao, Y.; Ning, X.; et al. Rational design of CdS/BiOCl S-scheme heterojunction for effective boosting piezocatalytic H2 evolution and pollutants degradation performances. J. Colloid. Interface. Sci. 2023, 639, 343-54.
88. Yang, G.; Chen, Q.; Wang, W.; et al. Cocatalyst engineering in piezocatalysis: a promising strategy for boosting hydrogen evolution. ACS. Appl. Mater. Interfaces. 2021, 13, 15305-14.
89. Shan, B.; Yuan, N.; Li, F.; et al. Plasmonic enhanced piezoelectric photocatalytic performance with PVDF@BT/MoS2/Au by strong piezoelectric functional particle doping. J. Alloys. Compd. 2022, 925, 166695.
90. Xiang, D.; Liu, Z.; Wu, M.; et al. Enhanced piezo-photoelectric catalysis with oriented carrier migration in asymmetric Au-ZnO nanorod array. Small 2020, 16, e1907603.
91. Liu, W.; Fu, P.; Zhang, Y.; Xu, H.; Wang, H.; Xing, M. Efficient hydrogen production from wastewater remediation by piezoelectricity coupling advanced oxidation processes. Proc. Natl. Acad. Sci. USA. 2023, 120, e2218813120.
92. Zhu, Z.; Jin, Z.; Jiang, C.; et al. Ferroelectric field enhanced tribocatalytic hydrogen production and RhB dye degradation by tungsten bronze ferroelectrics. Nanoscale 2024, 16, 10597-606.
93. Chen, S.; Liu, D.; Peng, T. Fundamentals and recent progress of photocatalytic nitrogen-fixation reaction over semiconductors. Solar. RRL. 2021, 5, 2000487.
94. Dong, G.; Huang, C.; Chen, F.; et al. Construction of electron rich Fe active sites by FeCu alloy anchoring on carbon nitride for photocatalytic nitrogen reduction. Rare. Met. 2024, 43, 1570-9.
95. Yuan, J.; Chen, F.; Feng, W.; et al. Dynamic switching spin state of fe single atoms for piezoelectric-mediated overall nitrogen fixation photosynthesis. Adv. Mater. 2025, 37, e2504015.
96. Xia, Y.; Xu, Y.; Yu, X.; et al. Structural design and control of photocatalytic nitrogen-fixing catalysts. J. Mater. Chem. A. 2022, 10, 17377-94.
97. Li, M.; Huang, H.; Low, J.; Gao, C.; Long, R.; Xiong, Y. Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction. Small. Methods. 2019, 3, 1800388.
98. Zhang, Y.; Wang, D.; Wang, S. High-entropy alloys for electrocatalysis: design, characterization, and applications. Small 2022, 18, e2104339.
99. Zhao, C.; Cai, L.; Wang, K.; et al. Novel Bi2WO6/ZnSnO3 heterojunction for the ultrasonic-vibration-driven piezocatalytic degradation of RhB. Environ. Pollut. 2023, 319, 120982.
100. Peng, F.; Lin, J.; Li, H.; et al. Design of piezoelectric ZnO based catalysts for ammonia production from N2 and H2O under ultrasound sonication. Nano. Energy. 2022, 95, 107020.
101. Dai, X.; Chen, L.; Li, Z.; et al. CuS/KTa0.75Nb0.25O3 nanocomposite utilizing solar and mechanical energy for catalytic N2 fixation. J. Colloid. Interface. Sci. 2021, 603, 220-32.
102. Chen, L.; Zhang, W.; Wang, J.; et al. High piezo/photocatalytic efficiency of Ag/Bi5O7I nanocomposite using mechanical and solar energy for N2 fixation and methyl orange degradation. Green. Energy. Environ. 2023, 8, 283-95.
103. Ning, X.; Hao, A.; Qiu, X. S-scheme heterojunction engineering of CdS/Bi2WO6 in breakthrough piezocatalytic nitrogen reduction and hydrogen evolution: performance, mechanism, and DFT calculations. Adv. Funct. Mater. 2025, 35, 2413217.
104. Chen, L.; Wang, J.; Li, X.; et al. Facile preparation of Ag2S/KTa0.5Nb0.5O3 heterojunction for enhanced performance in catalytic nitrogen fixation via photocatalysis and piezo-photocatalysis. Green. Energy. Environ. 2023, 8, 1630-43.
105. Yuan, J.; Feng, W.; Zhang, Y.; et al. Unraveling synergistic effect of defects and piezoelectric field in breakthrough piezo-photocatalytic N2 reduction. Adv. Mater. 2024, 36, e2303845.
106. Wu, Z.; Xu, T.; Ruan, L.; et al. Strong tribocatalytic nitrogen fixation of graphite carbon nitride g-C3N4 through harvesting friction energy. Nanomaterials 2022, 12, 1981.
107. Zhang, S.; Xiao, D.; Song, L.; Cui, T. Tribocatalytic nitrogen fixation assisted by active nitrogen atoms on the surface of Si3N4 at room temperature. J. Phys. Chem. C. 2024, 128, 19153-65.
108. Yu, H.; Wei, X.; Wang, M.; et al. Macroscopic polarization enhancement boosting piezo-photocatalytic performance via Nb-doping on B-site of Bi4Ti3O12 nanosheets. J. Adv. Ceram. 2024, 13, 437-46.
109. Huang, B.; Fu, X.; Wang, K.; et al. Chemically bonded BiVO4/Bi19Cl3S27 heterojunction with fast hole extraction dynamics for continuous CO2 photoreduction. Adv. Powder. Mater. 2024, 3, 100140.
110. Li, H.; Du, H.; Luo, H.; Wang, H.; Zhu, W.; Zhou, Y. Recent developments in metal nanocluster-based catalysts for improving photocatalytic CO2 reduction performance. Microstructures 2023, 3, 2023024.
111. Liang, X.; Tian, N.; Hu, S.; Zhou, Z.; Sun, S. Recent advances of bismuth-based electrocatalysts for CO2 reduction: strategies, mechanism and applications. Mater. Rep. Energy. 2023, 3, 100191.
112. Lu, S.; Zhang, S.; Liu, Q.; et al. Recent advances in novel materials for photocatalytic carbon dioxide reduction. Carbon. Neutral. 2024, 3, 142-68.
113. Li, Y.; Hou, Z.; Wan, X.; Liu, J.; Zhang, J. Halide perovskite-based heterostructures for photocatalytic CO2 conversion. Rare. Met. 2024, 43, 5453-72.
114. Vuong, H.; Nguyen, D.; Phuong, L. P.; Minh, P. P. D.; Ho, B. N.; Nguyen, H. A. Nitrogen-rich graphitic carbon nitride (g-C3N5): emerging low-bandgap materials for photocatalysis. Carbon. Neutral. 2023, 2, 425-57.
115. Phuong, P. T. T.; Vo, D. N.; Duy, N. P. H.; et al. Piezoelectric catalysis for efficient reduction of CO2 using lead-free ferroelectric particulates. Nano. Energy. 2022, 95, 107032.
116. He, J.; Wang, X.; Lan, S.; et al. Breaking the intrinsic activity barriers of perovskite oxides photocatalysts for catalytic CO2 reduction via piezoelectric polarization. Appl. Catal. B. Environ. 2022, 317, 121747.
117. Zhang, Y.; Thuy Phuong, P. T.; Hoang Duy, N. P.; et al. Polarisation tuneable piezo-catalytic activity of Nb-doped PZT with low Curie temperature for efficient CO2 reduction and H2 generation. Nanoscale. Adv. 2021, 3, 1362-74.
118. Ma, J.; Jing, S.; Wang, Y.; et al. Piezo-electrocatalysis for CO2 reduction driven by vibration. Adv. Energy. Mater. 2022, 12, 2200253.
119. Ni, J.; Zhao, R.; Shi, C.; et al. Structure-tailored superlattice Bi7Ti4NbO21: coupling octahedral tilting and rotation induced high ferroelectric polarization for efficient piezo-photocatalytic CO2 reduction. Adv. Powder. Mater. 2025, 4, 100265.
120. Li, P.; Tang, C.; Xiao, X.; Jia, Y.; Chen, W. Flammable gases produced by TiO2 nanoparticles under magnetic stirring in water. Friction 2022, 10, 1127-33.
121. Jia, X.; Wang, H.; Lei, H.; et al. Boosting tribo-catalytic conversion of H2O and CO2 by Co3O4 nanoparticles through metallic coatings in reactors. J. Adv. Ceram. 2023, 12, 1833-43.
122. Lei, H.; Wu, Z.; Wang, H.; et al. Converting H2O and CO2 into chemical fuels by nickel via friction. Surf. Interfaces. 2024, 46, 104203.
123. Tang, J.; Kumar, P. V.; Scott, J. A.; et al. Low temperature nano mechano-electrocatalytic CH4 conversion. ACS. Nano. 2022, 16, 8684-93.
124. Tang, Y.; Hao, J.; Qu, J.; et al. Robust synergistic effects of doping and defect engineering in photocatalytic H2O2 production. Mater. Rep. Energy. 2025, 5, 100325.
125. Huang, J.; Dong, H.; An, L.; Zhu, M.; Qin, J. Al-based metal-organic framework for piezocatalytic hydrogen peroxide production: efficiency, pathway, and mechanism. Chem. Eng. J. 2025, 504, 158555.
126. Wang, Y.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. Electrocatalytic oxygen reduction to hydrogen peroxide: from homogeneous to heterogeneous electrocatalysis. Adv. Energy. Mater. 2021, 11, 2003323.
127. Zhang, B.; Zhao, M.; Cheng, K.; et al. Piezoelectric effect coupled advanced oxidation processes for environmental catalysis application. Coord. Chem. Rev. 2025, 523, 216234.
128. Wu, Y.; Wang, P.; Che, H.; Liu, W.; Tang, C.; Ao, Y. Triggering dual two-electron Pathway for H2O2 generation by multiple [Bi-O]n interlayers in ultrathin Bi12O17Cl2 towards efficient piezo-self-fenton catalysis. Angew. Chem. Int. Ed. 2024, 63, e202316410.
129. Lin, S.; Wang, Q.; Huang, H.; Zhang, Y. Piezocatalytic and photocatalytic hydrogen peroxide evolution of sulfide solid solution nano-branches from pure water and air. Small 2022, 18, e2200914.
130. Wang, C.; Chen, F.; Hu, C.; Ma, T.; Zhang, Y.; Huang, H. Efficient piezocatalytic H2O2 production of atomic-level thickness
131. Fu, C.; Wu, T.; Sun, G.; et al. Dual-defect enhanced piezocatalytic performance of C3N5 for multifunctional applications. Appl. Catal. B. Environ. 2023, 323, 122196.
132. Banoo, M.; Samanta, K.; Sah, A. K.; et al. Bi off-centering in centrosymmetric BiOBr leading to ultrahigh bifunctional piezocatalytic fuel generation efficiencies in seawater. Adv. Funct. Mater. 2024, 34, 2411464.
133. Shao, D.; Zhang, L.; Sun, S.; Wang, W. Oxygen reduction reaction for generating H2O2 through a piezo-catalytic process over bismuth oxychloride. ChemSusChem 2018, 11, 527-31.
134. Wang, K.; Zhang, M.; Li, D.; et al. Ternary BaCaZrTi perovskite oxide piezocatalysts dancing for efficient hydrogen peroxide generation. Nano. Energy. 2022, 98, 107251.
135. Zhang, Y.; Lin, Y.; Li, R.; et al. Enhanced piezo-catalytic H2O2 production over Bi0.5Na0.5TiO3 via piezoelectricity enhancement and surface engineering. Chem. Eng. J. 2023, 465, 143043.
136. Wang, K.; Shao, D.; Zhang, L.; Zhou, Y.; Wang, H.; Wang, W. Efficient piezo-catalytic hydrogen peroxide production from water and oxygen over graphitic carbon nitride. J. Mater. Chem. A. 2019, 7, 20383-9.
137. Cui, Y.; Wang, F.; Yuan, P.; et al. Harvesting vibration energy to produce hydrogen peroxide with Bi3TiNbO9 nanosheets through a water oxidation dominated dual-channel pathway. ACS. Sustain. Chem. Eng. 2024, 12, 3595-607.
138. He, J.; Li, Z.; Feng, P.; et al. Piezo-catalysis mechanism elucidation by tracking oxygen reduction to hydrogen peroxide with in situ EPR spectroscopy. Angew. Chem. Int. Ed. 2024, 63, e202410381.
139. Zhou, X.; Yan, F.; Lyubartsev, A.; et al. Efficient production of solar hydrogen peroxide using piezoelectric polarization and photoinduced charge transfer of nanopiezoelectrics sensitized by carbon quantum dots. Adv. Sci. 2022, 9, e2105792.
140. Qiu, X.; Hao, A.; Hu, S.; et al. Oxygen vacancy engineering of Bi4Ti3O12 piezocatalyst driving in situ H2O2 evolution for self-cycled Fenton-like degradation of pollutants. Inorg. Chem. 2025, 64, 6172-82.
141. Berbille, A.; Li, X. F.; Su, Y.; et al. Mechanism for generating H2O2 at water-solid interface by contact-electrification. Adv. Mater. 2023, 35, e2304387.







