1. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050-1.
2. Zhang, P.; Wu, J.; Zhang, T.; et al. Perovskite solar cells with ZnO electron-transporting materials. Adv. Mater. 2018, 30, 1703737.
3. Liu, D.; Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 2014, 8, 133-8.
4. Das, S.; Yang, B.; Gu, G.; et al. High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS. Photonics. 2015, 2, 680-6.
5. Ma, C.; Zhang, C.; Chen, S.; et al. Interfacial defect passivation by multiple-effect molecule for efficient and stable perovskite solar cells. Solar. Energy. Mater. Solar. Cells. 2023, 262, 112499.
6. Zheng, X.; Li, Z.; Zhang, Y.; et al. Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nat. Energy. 2023, 8, 462-72.
7. Kim, J. Y.; Lee, J. W.; Jung, H. S.; Shin, H.; Park, N. G. High-efficiency perovskite solar cells. Chem. Rev. 2020, 120, 7867-918.
8. Qu, M.; Tian, Y.; Cheng, Y.; Zhong, J.; Zhang, C. Whole-device mass-producible perovskite photodetector based on laser-induced graphene electrodes. Adv. Opt. Mater. 2022, 10, 2201741.
9. Zhan, Y.; Cheng, Q.; Peng, J.; et al. Nacre inspired robust self-encapsulating flexible perovskite photodetector. Nano. Energy. 2022, 98, 107254.
10. Zhu, B. S.; Ma, Z. Y.; Song, Y. H.; et al. Ultrabright and efficient green perovskite light-emitting diodes enabled by well-crystallized dense CsPbBr3 nanocubes. Nano. Lett. 2024, 24, 14750-7.
11. Liu, L.; Xu, M.; Xu, X.; Tao, X.; Gao, Z. High sensitivity X-ray detectors with low degradation based on deuterated halide perovskite single crystals. Adv. Mater. 2024, 36, e2406443.
12. Wei, H.; Gong, J.; Liu, J.; et al. Thermally and mechanically stable perovskite artificial synapse as tuned by phase engineering for efferent neuromuscular control. Nano. Lett. 2024, 24, 9311-21.
13. Wang, J.; Zhang, C.; Liu, H.; et al. Tunable spin characteristic properties in spin valve devices based on hybrid organic-inorganic perovskites. Adv. Mater. 2019, 31, e1904059.
14. Ashley, M. J.; O'Brien, M. N.; Hedderick, K. R.; Mason, J. A.; Ross, M. B.; Mirkin, C. A. Templated synthesis of uniform perovskite nanowire arrays. J. Am. Chem. Soc. 2016, 138, 10096-9.
15. Tang, S.; Deng, Y.; Zheng, X.; et al. Composition engineering in doctor-blading of perovskite solar cells. Adv. Energy. Mater. 2017, 7, 1700302.
16. Zhang, Y.; Liu, Y.; Liu, S. Composition engineering of perovskite single crystals for high-performance optoelectronics. Adv. Funct. Mater. 2023, 33, 2210335.
17. Yu, J. C.; Li, B.; Dunn, C. J.; et al. High-performance and stable semi-transparent perovskite solar cells through composition engineering. Adv. Sci. 2022, 9, e2201487.
18. Li, Q.; Wang, Y.; Pan, W.; et al. High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite. Angew. Chem. Int. Ed. 2017, 56, 15969-73.
19. Ren, X.; Yan, X.; Ahmad, A. S.; et al. Pressure-induced phase transition and band gap engineering in propylammonium lead bromide perovskite. J. Phys. Chem. C. 2019, 123, 15204-8.
20. Francisco-López, A.; Charles, B.; Weber, O. J.; et al. Pressure-induced locking of methylammonium cations versus amorphization in hybrid lead iodide perovskites. J. Phys. Chem. C. 2018, 122, 22073-82.
21. Wang, Y.; Lü, X.; Yang, W.; et al. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite. J. Am. Chem. Soc. 2015, 137, 11144-9.
22. Yuan, Y.; Liu, X. F.; Ma, X.; et al. Large band gap narrowing and prolonged carrier lifetime of (C4H9NH3)2PbI4 under high pressure. Adv. Sci. 2019, 6, 1900240.
23. Wang, Y.; Long, R. Unravelling the effects of pressure-induced suppressed electron-hole recombination in CsPbBr3 perovskite: time-domain ab initio analysis. J. Phys. Chem. Lett. 2019, 10, 4354-61.
24. Sarkar, G.; Ghosh, D. Effects of lattice compression on halogen ion diffusion dynamics in mixed halide perovskites. ACS. Appl. Energy. Mater. 2024, 7, 6376-83.
25. Vishnoi, P.; Rao, C. N. R. Temperature and pressure induced structural transitions of lead iodide perovskites. J. Mater. Chem. A. 2023, 12, 19-37.
26. Capitani, F.; Marini, C.; Caramazza, S.; et al. High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite. J. Appl. Phys. 2016, 119, 185901.
27. Morozova, N. V.; Zhevstovskikh, I. V.; Korobeinikov, I. V.; Sarychev, M. N.; Semenova, O. I.; Ovsyannikov, S. V. Manipulating the phase stability of a halide perovskite, CH3NH3PbI3 by high-pressure cycling. J. Alloys. Compd. 2024, 988, 174305.
28. Wang, H.; Wang, Q.; Yang, K.; et al. The self-healing and robust photostability of (PEA)2PbI4 perovskite via pressure-induced amorphization and recrystallization. Opt. Mater. 2024, 152, 115449.
29. Nie, W.; Tsai, H.; Blancon, J. C.; et al. Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide. Adv. Mater. 2018, 30, 1703879.
30. Shao, S.; Dong, J.; Duim, H.; et al. Enhancing the crystallinity and perfecting the orientation of formamidinium tin iodide for highly efficient Sn-based perovskite solar cells. Nano. Energy. 2019, 60, 810-6.
31. Ahmadian-yazdi, M.; Lin, S.; Cai, Z. Unveiling heavy heterovalent doping-modulated microstructure and thermoelectric performance in bulk hybrid perovskite single crystals. Chem. Eng. J. 2024, 487, 150477.
32. Zhou, B.; Ding, D.; Wang, Y.; et al. A scalable H2O-DMF-DMSO solvent synthesis of highly luminescent inorganic perovskite-related cesium lead bromides. Adv. Opt. Mater. 2021, 9, 2001435.
33. Manjunatha, S. N.; Chu, Y.; Jeng, M.; Chang, L. The Characteristics of perovskite solar cells fabricated using DMF and DMSO/GBL solvents. J. Electron. Mater. 2020, 49, 6823-8.
34. Zhang, F.; Lian, J.; Song, J.; Hao, Y.; Zeng, P.; Niu, H. Sec-butyl alcohol assisted pinhole-free perovskite film growth for high-performance solar cells. J. Mater. Chem. A. 2016, 4, 3438-45.
35. Xiao, M.; Huang, F.; Huang, W.; et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 2014, 53, 9898-903.
36. Chen, J.; Ren, J.; Li, Z.; Wang, H.; Hao, Y. Mixed antisolvents assisted treatment of perovskite for photovoltaic device efficiency enhancement. Org. Electron. 2018, 56, 59-67.
37. Li, X.; Dar, M. I.; Yi, C.; et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 2015, 7, 703-11.
38. Wu, Z.; Raga, S. R.; Juarez-Perez, E. J.; et al. Improved efficiency and stability of perovskite solar cells induced by C=O functionalized hydrophobic ammonium-based additives. Adv. Mater. 2018, 30, 1703670.
39. Ahn, N.; Son, D. Y.; Jang, I. H.; Kang, S. M.; Choi, M.; Park, N. G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 2015, 137, 8696-9.
40. Noel, N. K.; Abate, A.; Stranks, S. D.; et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. ACS. Nano. 2014, 8, 9815-21.
41. Xiao, Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 2014, 26, 6503-9.
42. Xie, F. X.; Zhang, D.; Su, H.; et al. Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. ACS. Nano. 2015, 9, 639-46.
43. Liu, J.; Gao, C.; He, X.; et al. Improved crystallization of perovskite films by optimized solvent annealing for high efficiency solar cell. ACS. Appl. Mater. Interfaces. 2015, 7, 24008-15.
44. Gao, L.; Li, C.; Li, C.; Yang, G. Large-area high-efficiency perovskite solar cells based on perovskite films dried by the multi-flow air knife method in air. J. Mater. Chem. A. 2017, 5, 1548-57.
45. Zhong, J.; Wu, W.; Ding, L.; Kuang, D. Blade-coating perovskite films with diverse compositions for efficient photovoltaics. Energy. Environ. Mater. 2021, 4, 277-83.
46. Li, Z.; Wang, X.; Wang, Z.; et al. Ammonia for post-healing of formamidinium-based Perovskite films. Nat. Commun. 2022, 13, 4417.
47. Su, J.; Cai, H.; Ye, X.; et al. Efficient Perovskite solar cells prepared by hot air blowing to ultrasonic spraying in ambient air. ACS. Appl. Mater. Interfaces. 2019, 11, 10689-96.
48. Zhang, Z.; Li, Z.; Deng, L.; et al. Hot-air treatment-regulated diffusion of LiTFSI to accelerate the aging-induced efficiency rising of perovskite solar cells. ACS. Appl. Mater. Interfaces. 2022, 14, 4378-88.
49. Meng, K.; Chen, B.; Xiao, M.; et al. Humidity-insensitive, large-area-applicable, hot-air-assisted ambient fabrication of 2D perovskite solar cells. Adv. Mater. 2023, 35, e2209712.
50. Xing, R.; Shi, P.; Wang, D.; et al. Flexible self-powered weak light detectors based on ZnO/CsPbBr3/γ-CuI heterojunctions. ACS. Appl. Mater. Interfaces. 2022, 14, 40093-101.
51. Zhu, F.; Lian, G.; Cui, D.; et al. A general strategy for ordered carrier transport of quasi-2D and 3D Perovskite films for giant self-powered photoresponse and ultrahigh stability. Nanomicro. Lett. 2023, 15, 115.
52. Witt, C.; Leupold, N.; Ramming, P.; Schötz, K.; Moos, R.; Panzer, F. How the microstructure of MAPbI3 powder impacts pressure-induced compaction and optoelectronic thick-film properties. J. Phys. Chem. C. 2022, 126, 15424-35.
53. Liu, L.; Li, W.; Feng, X.; et al. Energy transfer assisted fast X-ray detection in direct/indirect hybrid perovskite wafer. Adv. Sci. 2022, 9, e2103735.
54. Shi, Y.; Zhou, Y.; Ma, Z.; Xiao, G.; Wang, K.; Zou, B. Structural regulation and optical behavior of three-dimensional metal halide perovskites under pressure. J. Mater. Chem. C. 2020, 8, 12755-67.
55. Liu, G.; Kong, L.; Yang, W.; Mao, H. Pressure engineering of photovoltaic perovskites. Mater. Today. 2019, 27, 91-106.
56. Wang, N.; Zhang, S.; Wang, S.; et al. Pressure engineering on perovskite structures, properties, and devices. Adv. Funct. Mater. 2024, 34, 2315918.
57. Li, N.; Li, Y.; Xie, S.; et al. High-performance and self-powered X-ray detectors made of smooth perovskite microcrystalline films with 100 μm grains. Angew. Chem. Int. Ed. 2023, 62, e202302435.
58. Liu, Y.; Wu, Z.; Dou, Y.; et al. Formamidinium-based perovskite solar cells with enhanced moisture stability and performance via confined pressure annealing. J. Phys. Chem. C. 2020, 124, 12249-58.
59. Shrestha, S.; Fischer, R.; Matt, G. J.; et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat. Photon. 2017, 11, 436-40.
60. Li, W. G.; Wang, X. D.; Huang, Y. H.; Kuang, D. B. Ultrasound-assisted crystallization enables large-area perovskite quasi-monocrystalline film for high-sensitive X-ray detection and imaging. Adv. Mater. 2023, 35, e2210878.
61. Zhang, H. J.; Liu, Y. F.; Zheng, X.; Feng, J. Improved performance of all-inorganic perovskite light-emitting diodes via nanostructured stamp imprinting. Chemphyschem 2023, 24, e202200860.
62. Mosconi, E.; De, A. F. Mobile ions in organohalide perovskites: interplay of electronic structure and dynamics. ACS. Energy. Lett. 2016, 1, 182-8.
63. Yang, R. X.; Skelton, J. M.; da, S. E. L.; Frost, J. M.; Walsh, A. Spontaneous octahedral tilting in the cubic inorganic cesium halide perovskites CsSnX3 and CsPbX3 (X = F, Cl, Br, I). J. Phys. Chem. Lett. 2017, 8, 4720-6.
64. Fabini, D. H.; Seshadri, R.; Kanatzidis, M. G. The underappreciated lone pair in halide perovskites underpins their unusual properties. MRS. Bull. 2020, 45, 467-77.
65. Reyes-Martinez, M. A.; Abdelhady, A. L.; Saidaminov, M. I.; et al. Time-dependent mechanical response of APbX3 (A = Cs, CH3NH3; X = I, Br) single crystals. Adv. Mater. 2017, 29, 1606556.
66. Rakita, Y.; Cohen, S. R.; Kedem, N. K.; Hodes, G.; Cahen, D. Mechanical properties of APbX3 (A = Cs or CH3NH3; X = I or Br) perovskite single crystals. MRS. Commun. 2015, 5, 623-9.
67. Li, M.; Li, H.; Li, W.; et al. Oriented 2D Perovskite wafers for anisotropic X-ray detection through a fast tableting strategy. Adv. Mater. 2022, 34, e2108020.
68. Witt, C.; Schmid, A.; Leupold, N.; et al. Impact of pressure and temperature on the compaction dynamics and layer properties of powder-pressed methylammonium lead halide thick films. ACS. Appl. Electron. Mater. 2020, 2, 2619-28.
69. Matsushima, T.; Fujihara, T.; Qin, C.; et al. Morphological control of organic-inorganic perovskite layers by hot isostatic pressing for efficient planar solar cells. J. Mater. Chem. A. 2015, 3, 17780-7.
70. Mayer, A.; Haeger, T.; Runkel, M.; et al. Relevance of processing parameters for grain growth of metal halide perovskites with nanoimprint. Appl. Phys. A. 2021, 127, 4830.
71. Dunlap-shohl, W. A.; Li, T.; Mitzi, D. B. Interfacial effects during rapid lamination within MAPbI3 thin films and solar cells. ACS. Appl. Energy. Mater. 2019, 2, 5083-93.
72. Mayer, A.; Pourdavoud, N.; Doukkali, Z.; et al. Upgrading of methylammonium lead halide perovskite layers by thermal imprint. Appl. Phys. A. 2021, 127, 4366.
73. Moon, J.; Kwon, S.; Alahbakhshi, M.; et al. Surface energy-driven preferential grain growth of metal halide perovskites: effects of nanoimprint lithography beyond direct patterning. ACS. Appl. Mater. Interfaces. 2021, 13, 5368-78.
74. Palmer, J. E.; Thompson, C. V.; Smith, H. I. Grain growth and grain size distributions in thin germanium films. J. Appl. Phys. 1987, 62, 2492-7.
75. Thompson, C. V. Grain growth in thin films. Annu. Rev. Mater. Sci. 1990, 20, 245-68.
76. Thompson, C. V. Structure evolution during processing of polycrystalline films. Annu. Rev. Mater. Sci. 2000, 30, 159-90.
77. Mayer, A.; Haeger, T.; Runkel, M.; et al. Direct patterning of methylammonium lead bromide perovskites by thermal imprint. Appl. Phys. A. 2022, 128, 5521.
78. Fu, X.; Dong, N.; Lian, G.; et al. High-quality CH3NH3PbI3 films obtained via a pressure-assisted space-confined solvent-engineering strategy for ultrasensitive photodetectors. Nano. Lett. 2018, 18, 1213-20.
79. Thompson, C.; Carel, R. Texture development in polycrystalline thin films. Mater. Sci. Eng. B. 1995, 32, 211-9.
80. Thompson, C. Grain growth in polycrystalline thin films of semiconductors. Interface. Sci. 1998, 6, 85-93.
81. Wang, T.; Lian, G.; Huang, L.; et al. MAPbI3 quasi-single-crystal films composed of large-sized grains with deep boundary fusion for sensitive vis-NIR photodetectors. ACS. Appl. Mater. Interfaces. 2020, 12, 38314-24.
82. Zhang, L.; Zhang, T.; Gao, Y.; et al. Uniaxially oriented FAxMA1-xPbI3 films with low intragrain and structural defects for self-powered photodetectors. J. Mater. Chem. C. 2022, 10, 9546-53.
83. Zheng, L.; Nozariasbmarz, A.; Hou, Y.; et al. A universal all-solid synthesis for high throughput production of halide perovskite. Nat. Commun. 2022, 13, 7399.
84. Zhang, H.; Hou, W.; Hao, Y.; Song, J.; Zhang, F. Unified crystal phase control with MACl for inducing single-crystal-like perovskite thin films in high-pressure fusion toward high efficiency perovskite solar cell modules. Small 2024, 20, e2400173.
85. Zhang, J.; Liu, F.; Li, S.; et al. Recrystallization behaviour of cubic boron nitride under high pressure. J. Eur. Ceram. Soc. 2021, 41, 132-8.
86. Yin, T.; Fang, Y.; Chong, W. K.; et al. High-pressure-induced comminution and recrystallization of CH3NH3PbBr3 nanocrystals as large thin nanoplates. Adv. Mater. 2018, 30, 1705017.
87. Lee, K. J.; Wei, R.; Wang, Y.; et al. Gigantic suppression of recombination rate in 3D lead-halide perovskites for enhanced photodetector performance. Nat. Photon. 2023, 17, 236-43.
88. Shao, Y.; Fang, Y.; Li, T.; et al. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films. Energy. Environ. Sci. 2016, 9, 1752-9.
89. Sherkar, T. S.; Momblona, C.; Gil-Escrig, L.; et al. Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS. Energy. Lett. 2017, 2, 1214-22.
90. Luo, J.; Xia, J.; Yang, H.; et al. A pressure process for efficient and stable perovskite solar cells. Nano. Energy. 2020, 77, 105063.
91. Chun, D. H.; Kim, S.; Chai, S. U.; et al. Grain boundary healing of organic-inorganic halide perovskites for moisture stability. Nano. Lett. 2019, 19, 6498-505.
92. Lanaghan, C. L.; Okia, O.; Coons, T.; et al. Understanding process-structure relationships during lamination of halide perovskite interfaces. ACS. Appl. Mater. Interfaces. 2024, 16, 58657-67.
93. Yang, B.; Xie, Y.; Zeng, P.; Dong, Y.; Ou, Q.; Zhang, S. Tightly compacted perovskite laminates on flexible substrates via hot-pressing. Appl. Sci. 2020, 10, 1917.
94. Zhang, W.; Li, Y.; Liu, X.; Tang, D.; Li, X.; Yuan, X. Ethyl acetate green antisolvent process for high-performance planar low-temperature SnO2-based perovskite solar cells made in ambient air. Chem. Eng. J. 2020, 379, 122298.
95. Wang, T.; Lian, G.; Huang, L.; et al. A crystal-growth boundary-fusion strategy to prepare high-quality MAPbI3 films for excellent Vis-NIR photodetectors. Nano. Energy. 2019, 64, 103914.
96. Huang, L.; Xing, Z.; Tang, X.; et al. Toward efficient perovskite solar cells by planar imprint for improved perovskite film quality and granted bifunctional barrier. J. Mater. Chem. A. 2021, 9, 16178-86.
97. Chen, H.; Ye, F.; Tang, W.; et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 2017, 550, 92-5.
98. Yu, Y.; Shang, M.; Wang, T.; et al. All-round performance improvement of semitransparent perovskite solar cells by a pressure-assisted method. J. Mater. Chem. C. 2021, 9, 15056-64.
99. Zhang, H.; Ye, S.; Hao, Y.; et al. Realization of ultra-flat perovskite films with surprisingly large-grain distribution using high-pressure cooking. Chem. Eng. J. 2022, 445, 136803.
100. Zhu, F.; Lian, G.; Yu, B.; et al. Pressure-enhanced vertical orientation and compositional control of ruddlesden-popper perovskites for efficient and stable solar cells and self-powered photodetectors. ACS. Appl. Mater. Interfaces. 2022, 14, 1526-36.
101. Li, T.; Dunlap-shohl, W. A.; Mitzi, D. B. Bifacial perovskite solar cells via a rapid lamination process. ACS. Appl. Energy. Mater. 2020, 3, 9493-7.
102. Gan, S.; Sun, H.; Li, C.; Dou, D.; Li, L. Bifacial perovskite solar cells: a universal component that goes beyond albedo utilization. Sci. Bull. 2023, 68, 2247-67.
103. Yadavalli, S. K.; Lanaghan, C. L.; Palmer, J.; et al. Lamination of >21% efficient perovskite solar cells with independent process control of transport layers and interfaces. ACS. Appl. Mater. Interfaces. 2024, 16, 16040-9.
104. Dong, N.; Fu, X.; Lian, G.; et al. Solvent-assisted thermal-pressure strategy for constructing high-quality CH3NH3PbI3-xClx films as high-performance perovskite photodetectors. ACS. Appl. Mater. Interfaces. 2018, 10, 8393-8.
105. Zhou, H.; Song, Z.; Grice, C. R.; et al. Pressure-assisted annealing strategy for high-performance self-powered all-inorganic perovskite microcrystal photodetectors. J. Phys. Chem. Lett. 2018, 9, 4714-9.
106. Shang, M.; Lian, G.; Lv, S.; et al. “Visible” phase separation of MAPbI3/δ-FAPbI3 films for high-performance and stable photodetectors. Adv. Mater. Inter. 2021, 8, 2100266.
107. Huang, L.; Yu, B.; Zhu, F.; et al. Spin-coating thermal-pressed strategy for the preparation of inorganic perovskite quasi-single-crystal thin films with giant single-/two-photon responses. Nano. Energy. 2022, 92, 106719.
108. Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019-38.
109. Yang, B.; Pan, W.; Wu, H.; et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nat. Commun. 2019, 10, 1989.
110. Liu, W.; Shi, T.; Zhu, J.; et al. PbI2-DMSO assisted in situ growth of perovskite wafers for sensitive direct X-ray detection. Adv. Sci. 2022, 10, e2204512.
111. Wu, J.; Wang, L.; Feng, A.; et al. Self-powered FA0.55MA0.45PbI3 single-crystal perovskite X-ray detectors with high sensitivity. Adv. Funct. Mater. 2022, 32, 2109149.
112. Wang, W.; Meng, H.; Qi, H.; et al. Electronic-grade high-quality perovskite single crystals by a steady self-supply solution growth for high-performance X-ray detectors. Adv. Mater. 2020, 32, e2001540.
113. Stranks, S. D.; Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015, 10, 391-402.
114. Zhmakin, A. Enhancement of light extraction from light emitting diodes. Phys. Rep. 2011, 498, 189-241.
115. Zhu, H.; Fu, Y.; Meng, F.; et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636-42.
116. Fu, Y.; Zhu, H.; Schrader, A. W.; et al. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano. Lett. 2016, 16, 1000-8.
117. Zhang, Q.; Ha, S. T.; Liu, X.; Sum, T. C.; Xiong, Q. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano. Lett. 2014, 14, 5995-6001.
118. Meng, K.; Gao, S.; Wu, L.; et al. Two-dimensional organic-inorganic hybrid perovskite photonic films. Nano. Lett. 2016, 16, 4166-73.
119. Zhang, H.; Zou, C.; Chen, Y.; et al. Continuous-wave vertical cavity surface-emitting lasers based on single crystalline lead halide perovskites. Adv. Opt. Mater. 2021, 9, 2001982.
120. Pourdavoud, N.; Wang, S.; Mayer, A.; et al. Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites. Adv. Mater. 2017, 29, 1605003.
121. Pourdavoud, N.; Mayer, A.; Buchmüller, M.; et al. Distributed feedback lasers based on MAPbBr3. Adv. Mater. Technol. 2018, 3, 1700253.
122. Shao, Z.; Wang, Z.; Li, Z.; et al. A scalable methylamine gas healing strategy for high-efficiency inorganic perovskite solar cells. Angew. Chem. Int. Ed. 2019, 58, 5587-91.
123. Zhuang, J.; Liu, C.; Kang, B.; et al. Rapid surface reconstruction in air-processed perovskite solar cells by blade coating. Adv. Mater. 2024, 36, e2309869.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.