REFERENCES
1. Yasuoka, S.; Shimizu, T.; Tateyama, A.; et al. Effects of deposition conditions on the ferroelectric properties of (Al1-xScx)N thin films. J. Appl. Phys. 2020, 128, 114103.
2. Lin, B. T.; Lee, W. H.; Shieh, J.; Chen, M. J. Ferroelectric AlN ultrathin films prepared by atomic layer epitaxy, In Proceedings Behavior and Mechanics of Multifunctional Materials XIII; 2019.
3. Hasegawa, K.; Shimizu, T.; Ohsawa, T.; Sakaguchi, I.; Ohashi, N. Full polarization reversal at room temperature in unsubstituted AlN. Appl. Phys. Lett. 2023, 123, 192903.
4. Skidmore, C. H.; Spurling, R. J.; Hayden, J.; et al. Proximity ferroelectricity in wurtzite heterostructures. Nature 2025, 637, 574-9.
5. Kim, K. H.; Han, Z.; Zhang, Y.; et al. Multistate, ultrathin, back-end-of-line-compatible AlScN ferroelectric diodes. ACS. Nano. 2024, 18, 15925-34.
6. Schönweger, G.; Wolff, N.; Islam, M. R.; et al. In-grain ferroelectric switching in sub-5 nm Thin Al0.74Sc0.26N films at 1 V. Adv. Sci. 2023, 10, e2302296.
7. Zheng, J. X.; Fiagbenu, M. M. A.; Esteves, G.; et al. Ferroelectric behavior of sputter deposited Al0.72Sc0.28N approaching 5 nm thickness. Appl. Phys. Lett. 2023, 122, 222901.
8. Liu, X.; Wang, D.; Kim, K. H.; et al. Post-CMOS compatible aluminum scandium nitride/2D channel ferroelectric field-effect-transistor memory. Nano. Lett. 2021, 21, 3753-61.
9. Hu, Z.; Cho, H.; Rai, R. K.; et al. Demonstration of highly scaled AlScN ferroelectric diode memory with storage density > 100 Mbit/mm2. arXiv 2025, 2504.13283.
10. Pradhan, D. K.; Moore, D. C.; Kim, G.; et al. A scalable ferroelectric non-volatile memory operating at 600 °C. Nat. Electron. 2024, 7, 348-55.
11. Dai, X.; Hua, Q.; Jiang, C.; et al. Artificial synapse based on a tri-layer AlN/AlScN/AlN stacked memristor for neuromorphic computing. Nano. Energy. 2024, 124, 109473.
12. Nomoto, K.; Casamento, J.; Nguyen, T. S.; et al. AlScN/GaN HEMTs with 4 A/mm on-current and maximum oscillation frequency >130 GHz. Appl. Phys. Express. 2025, 18, 016506.
13. Zhao, C.; Xu, B.; Wang, Z.; Wang, Z. Boron-doped III-V semiconductors for Si-based optoelectronic devices. J. Semicond. 2020, 41, 011301.
14. Cohen, A.; Li, J.; Cohen, H.; et al. Local environment of Sc and Y dopant ions in aluminum nitride thin films. ACS. Appl. Electron. Mater. 2024, 6, 853-61.
15. Anggraini, S. A.; Uehara, M.; Hirata, K.; Yamada, H.; Akiyama, M. Polarity inversion of aluminum nitride thin films by using Si and MgSi dopants. Sci. Rep. 2020, 10, 4369.
16. Alam, M. N.; Olszewski, O. Z.; Campanella, H.; Nolan, M. Large piezoelectric response and ferroelectricity in Li and V/Nb/Ta Co-doped w-AlN. ACS. Appl. Mater. Interfaces. 2021, 13, 944-54.
17. Yokoyama, T.; Iwazaki, Y.; Onda, Y.; Nishihara, T.; Sasajima, Y.; Ueda, M. Highly piezoelectric co-doped AlN thin films for wideband FBAR applications. IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 2015, 62, 1007-15.
18. Startt, J.; Quazi, M.; Sharma, P.; et al. Unlocking AlN piezoelectric performance with earth-abundant dopants. Adv. Elect. Mater. 2023, 9, 2201187.
19. Savant, C.; Gund, V.; Nomoto, K.; et al. Ferroelectric AlBN films by molecular beam epitaxy. Appl. Phys. Lett. 2024, 125, 072902.
20. Anggraini, S. A.; Uehara, M.; Yamada, H.; Akiyama, M. Investigating the piezoelectric response of Mg-Ti-doped-AlN thin films for sensor application. 2017 IEEE Sensors, Glasgow, UK, 29 October 2017 - 01 November 2017; pp. 1-3.
21. Eliseev, E. A.; Morozovska, A. N.; Maria, J. P.; Chen, L. Q.; Gopalan, V. Thermodynamic theory of proximity ferroelectricity. Phys. Rev. X. 2025, 15, 021058.
22. Stutzmann, M.; Ambacher, O.; Eickhoff, M.; et al. Playing with polarity. Phys. Stat. Sol. B. 2001, 228, 505-12.
23. Calderon, S.; Hayden, J.; Baksa, S. M.; et al. Atomic-scale polarization switching in wurtzite ferroelectrics. Science 2023, 380, 1034-8.
24. Maria, J. P.; Skidmore, C. Data for "Proximity ferroelectricity in wurtzite heterostructures". Scholarsphere 2024. DOI: 10.26207/qaed-vy98.
25. Drury, D.; Yazawa, K.; Zakutayev, A.; Hanrahan, B.; Brennecka, G. High-temperature ferroelectric behavior of Al0.7Sc0.3N. Micromachines 2022, 13, 887.
26. Zhu, W.; Hayden, J.; He, F.; et al. Strongly temperature dependent ferroelectric switching in AlN, Al1-xScxN, and Al1-xBxN thin films. Appl. Phys. Lett. 2021, 119, 062901.
27. Höglund, C.; Birch, J.; Alling, B.; et al. Wurtzite structure Sc1-xAlxN solid solution films grown by reactive magnetron sputter epitaxy: structural characterization and first-principles calculations. J. Appl. Phys. 2010, 107, 123515.
28. Saha, B.; Saber, S.; Naik, G. V.; et al. Development of epitaxial Al1-xScxN for artificially structured metal/semiconductor superlattice metamaterials: epitaxial AlxSc1-xN for artificially structured superlattice metamaterials. Phys. Status. Solidi. B. 2015, 252, 251-9.
29. Brien, V.; Pigeat, P. Correlation between the oxygen content and the morphology of AlN films grown by r.f. magnetron sputtering. J. Crystal. Growth. 2008, 310, 3890-5.
30. Ye, K. H.; Han, G.; Yeu, I. W.; Hwang, C. S.; Choi, J. Atomistic understanding of the ferroelectric properties of a wurtzite-structure (AlN)n/(ScN)m superlattice. Phys. Rap. Res. 2021, 15, 2100009.
31. Dawber, M.; Chandra, P.; Littlewood, P. B.; Scott, J. F. Depolarization corrections to the coercive field in thin-film ferroelectrics. J. Phys. Condens. Matter. 2003, 15, L393-8.
32. Hayden, J.; Hossain, M. D.; Xiong, Y.; et al. Ferroelectricity in boron-substituted aluminum nitride thin films. Phys. Rev. Mater. 2021, 5, 044412.
33. Ferri, K.; Bachu, S.; Zhu, W.; et al. Ferroelectrics everywhere: ferroelectricity in magnesium substituted zinc oxide thin films. J. App. Phys. 2021, 130, 044101.
34. Moriwake, H.; Yokoi, R.; Taguchi, A.; et al. A computational search for wurtzite-structured ferroelectrics with low coercive voltages. APL. Mater. 2020, 8, 121102.
35. Dai, Y.; Wu, M. Covalent-like bondings and abnormal formation of ferroelectric structures in binary ionic salts. Sci. Adv. 2023, 9, eadf8706.
37. He, F.; Zhu, W.; Hayden, J.; et al. Frequency dependence of wake-up and fatigue characteristics in ferroelectric Al0.93B0.07N thin films. Acta. Mater. 2024, 266, 119678.
38. Zhu, W.; He, F.; Hayden, J.; et al. Wake-up in Al1-xBxN ferroelectric films. Adv. Electron. Mater. 2022, 8, 2100931.
39. Yazawa, K.; Hayden, J.; Maria, J. P.; et al. Anomalously abrupt switching of wurtzite-structured ferroelectrics: simultaneous non-linear nucleation and growth model. Mater. Horiz. 2023, 10, 2936-44.
40. Momida, H.; Teshigahara, A.; Oguchi, T. Strong enhancement of piezoelectric constants in ScxAl1-xN: first-principles calculations. AIP. Adv. 2016, 6, 065006.
41. Messi, F.; Patidar, J.; Rodkey, N.; Dräyer, C. W.; Trassin, M.; Siol, S. Ferroelectric AlScN thin films with enhanced polarization and low leakage enabled by high-power impulse magnetron sputtering. APL. Mater. 2025, 13, 051123.
42. Sun, W.; Zhou, J.; Jin, F.; Liu, N.; Zheng, S.; Li, B. Temperature dependence in coercive field of ferroelectric AlScN integrated on Si substrate, In 2024 IEEE International Conference on IC Design and Technology (ICICDT). Singapore; 2024, pp. 1-4.
43. Hornsteiner, J.; Born, E.; Fischerauer, G.; Riha, E. Surface acoustic wave sensors for high-temperature applications, In Proceedings of the 1998 IEEE International Frequency Control Symposium, 1998; pp. 615-20.
44. Yazawa, K.; Drury, D.; Zakutayev, A.; Brennecka, G. L. Reduced coercive field in epitaxial thin film of ferroelectric wurtzite
45. Tasnádi, F.; Alling, B.; Höglund, C.; et al. Origin of the anomalous piezoelectric response in wurtzite ScxAl1-xN alloys. Phys. Rev. Lett. 2010, 104, 137601.
46. Fichtner, S.; Wolff, N.; Lofink, F.; Kienle, L.; Wagner, B. AlScN: a III-V semiconductor based ferroelectric. J. Appl. Phys. 2019, 125, 114103.
47. Galsin, J. S. Chapter 1 - Crystal Structure of Solids. Solid State Physics. Elsevier; 2019. pp. 1-36.
48. Liu, X.; Zheng, J.; Wang, D.; et al. Aluminum scandium nitride-based metal-ferroelectric-metal diode memory devices with high on/off ratios. Appl. Phys. Lett. 2021, 118, 202901.
49. Wang, J.; Park, M.; Mertin, S.; Pensala, T.; Ayazi, F.; Ansari, A. A high-kt2 switchable ferroelectric Al0.7Sc0.3N film bulk acoustic resonator. In 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF), Keystone, CO, USA; 2020, pp. 1-3.
50. Herrera, B.; Pirro, M.; Giribaldi, G.; Colombo, L.; Rinaldi, M. AlScN programmable ferroelectric micromachined ultrasonic transducer (FMUT). In 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA; 2021, pp. 38-41.
51. Rassay, S.; Mo, D.; Li, C.; Choudhary, N.; Forgey, C.; Tabrizian, R. Intrinsically switchable ferroelectric scandium aluminum nitride lamb-mode resonators. IEEE. Electron. Device. Lett. 2021, 42, 1065-8.
52. Zhang, S.; Holec, D.; Fu, W. Y.; Humphreys, C. J.; Moram, M. A. Tunable optoelectronic and ferroelectric properties in Sc-based III-nitrides. J. App. Phys. 2013, 114, 133510.
53. Business Research Insights. Thin film piezoelectric devices market size, share, growth, trends and industry analysis, by type (AlN Thin Film, PZT Thin Film), by application (Consumer Electronics, Healthcare, Aerospace and Defense, Others), regional insights and forecast From 2025 to 2033 . Available from: https://www.businessresearchinsights.com/market-reports/thin-film-piezoelectric-devices-market-110756 [Last accessed on 28 Jul 2025].
54. Höglund, C.; Bareño, J.; Birch, J.; Alling, B.; Czigány, Z.; Hultman, L. Cubic Sc1-xAlxN solid solution thin films deposited by reactive magnetron sputter epitaxy onto ScN(111). J. Appl. Phys. 2009, 105, 113517.
55. dos Santos, R. B.; Rivelino, R.; de Brito Mota, F.; Gueorguiev, G. K.; Kakanakova-Georgieva, A. Dopant species with Al-Si and N-Si bonding in the MOCVD of AlN implementing trimethylaluminum, ammonia and silane. J. Phys. D. Appl. Phys. 2015, 48, 295104.
56. Taniyasu, Y.; Kasu, M.; Makimoto, T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 2006, 441, 325-8.
57. Bernardini, F.; Fiorentini, V.; Vanderbilt, D. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B. 1997, 56, R10024-7.
58. Aubert, T.; Bardong, J.; Legrani, O.; et al. In situ high-temperature characterization of AlN-based surface acoustic wave devices. J. Appl. Phys. 2013, 114, 014505.
59. Aubert, T.; Elmazria, O.; Assouar, B.; Hamdan, A.; Genève, D. Reliability of AlN/Sapphire bilayer structure for high-temperature SAW applications. In 2010 IEEE International Ultrasonics Symposium, San Diego, CA, USA; 2010, pp. 1490-3.
60. Akiyama, M.; Kamohara, T.; Kano, K.; Teshigahara, A.; Takeuchi, Y.; Kawahara, N. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. 2009, 21, 593-6.
61. Deng, R.; Jiang, K.; Gall, D. Optical phonon modes in Al1-xScxN. J. Appl. Phys. 2014, 115, 013506.
62. Jin, E. N.; Hardy, M. T.; Mock, A. L.; et al. Band alignment of ScxAl1-xN/GaN heterojunctions. ACS. Appl. Mater. Interfaces. 2020, 12, 52192-200.
63. Constantin, C.; Brithen, H. A.; Haider, M. B.; Ingram, D.; Smith, A. R. ScGaN alloy growth by molecular beam epitaxy: evidence for a metastable layered hexagonal phase. Phys. Rev. B. 2004, 70, 239902.
64. Moram, M. A.; Zhang, S. ScGaN and ScAlN: emerging nitride materials. J. Mater. Chem. A. 2014, 2, 6042-50.
65. Tholander, C.; Birch, J.; Tasnádi, F.; et al. Ab initio calculations and experimental study of piezoelectric Y In1-N thin films deposited using reactive magnetron sputter epitaxy. Acta. Mater. 2016, 105, 199-206.
66. Umeda, K.; Kawai, H.; Honda, A.; Akiyama, M.; Kato, T.; Fukura, T. Piezoelectric properties of ScAlN thin films for piezo-MEMS devices, In IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan; 2013, pp. 733-6.
67. Liauh, W. J.; Wu, S.; Huang, J. L.; Lii, D. F.; Lin, Z. X.; Yeh, W. K. Microstructure and piezoelectric properties of reactively sputtered highly C-axis ScxAl1-xN thin films on diamond-like carbon/Si substrate. Surf. Coat. Technol. 2016, 308, 101-7.
68. Talley, K. R.; Millican, S. L.; Mangum, J.; et al. Implications of heterostructural alloying for enhanced piezoelectric performance of (Al,Sc)N. Phys. Rev. Mater. 2018, 2, 063802.
69. Furuta, K.; Hirata, K.; Anggraini, S. A.; Akiyama, M.; Uehara, M.; Yamada, H. First-principles calculations of spontaneous polarization in ScAlN. J. Appl. Phys. 2021, 130, 024104.
70. Lu, H.; Schönweger, G.; Petraru, A.; Kohlstedt, H.; Fichtner, S.; Gruverman, A. Domain dynamics and resistive switching in ferroelectric Al1-xScxN thin film capacitors. Adv. Funct. Mater. 2024, 34, 2315169.
71. Tybell, T.; Paruch, P.; Giamarchi, T.; Triscone, J. M. Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.08)O3 thin films. Phys. Rev. Lett. 2002, 89, 097601.
72. Wang, D.; Wang, D.; Zhou, P.; et al. On the surface oxidation and band alignment of ferroelectric Sc0.18Al0.82N/GaN heterostructures. Appl. Surf. Sci. 2023, 628, 157337.
73. Dreyer, C. E.; Janotti, A.; Van de Walle, C. G.; Vanderbilt, D. Correct implementation of polarization constants in Wurtzite materials and impact on III-nitrides. Phys. Rev. X. 2016, 6, 021038.
74. Satoh, S.; Ohtaka, K.; Shimatsu, T.; Tanaka, S. Crystal structure deformation and phase transition of AlScN thin films in whole Sc concentration range. J. Appl. Phys. 2022, 132, 025103.
75. Petrich, R.; Bartsch, H.; Tonisch, K.; Jaekel, K.; Barth, S.; Bartzsch, H. Investigation of ScAlN for piezoelectric and ferroelectric applications. In 2019 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC), Pisa, Italy; 2019, pp. 1-5.
77. Koh, Y. R.; Shi, J.; Wang, B.; et al. Thermal boundary conductance across epitaxial metal/sapphire interfaces. Phys. Rev. B. 2020, 102, 205304.
78. Milyutin, E.; Harada, S.; Martin, D.; et al. Sputtering of (001)AlN thin films: control of polarity by a seed layer. J. Vac. Sci. Technol. B. 2010, 28, L61-3.
79. Yasuoka, S.; Mizutani, R.; Ota, R.; et al. Tunable ferroelectric properties in Wurtzite (Al0.8Sc0.2)N via crystal anisotropy. ACS. Appl. Electron. Mater. 2022, 4, 5165-70.
80. Farrer, N.; Bellaiche, L. Properties of hexagonal ScN versus wurtzite GaN and InN. Phys. Rev. B. 2002, 66, 201203.
81. Yazawa, K.; Mangum, J. S.; Gorai, P.; Brennecka, G. L.; Zakutayev, A. Local chemical origin of ferroelectric behavior in wurtzite nitrides. J. Mater. Chem. C. 2022, 10, 17557-66.
83. Moriarty, J. L.; Humphreys, J. E.; Gordon, R. O.; Baenziger, N. C. X-ray examination of some rare-earth-containing binary alloy systems. Acta. Cryst. 1966, 21, 840-1.
84. Gschneidner, K. A.; Calderwood, F. W. The Alt-Sc (aluminum-scandium) system. Bull. Alloy. Phase. Diagr. 1989, 10, 34-6.
85. Schob, O.; Parthé, E. AB compounds with Sc, Y and rare earth metals. I. Scandium and yttrium compounds with CrB and CsCl structure. Acta. Cryst. 1965, 19, 214-24.
86. Eymond, S.; Parthé, E. Sc2Al with Ni2ln structure type. J. Less. Common. Metals. 1969, 19, 441-3.
87. Romano, L. T.; Northrup, J. E.; O’keefe, M. A. Inversion domains in GaN grown on sapphire. Appl. Phys. Lett. 1996, 69, 2394-6.
88. Northrup, J. E.; Neugebauer, J.; Romano, L. T. Inversion domain and stacking mismatch boundaries in GaN. Phys. Rev. Lett. 1996, 77, 103-6.
89. Dawber, M.; Bousquet, E. New developments in artificially layered ferroelectric oxide superlattices. MRS. Bull. 2013, 38, 1048-55.
90. Badylevich, M.; Shamuilia, S.; Afanas’ev, V. V.; Stesmans, A.; Fedorenko, Y. G.; Zhao, C. Electronic structure of the interface of aluminum nitride with Si(100). J. Appl. Phys. 2008, 104, 093713.
91. Wang, D.; Wang, P.; Mondal, S.; et al. Thickness scaling down to 5 nm of ferroelectric ScAlN on CMOS compatible molybdenum grown by molecular beam epitaxy. Appl. Phys. Lett. 2023, 122, 052101.
92. Yasuoka, S.; Mizutani, R.; Ota, R.; et al. Enhancement of crystal anisotropy and ferroelectricity by decreasing thickness in (Al,Sc)N films. J. Ceram. Soc. Japan. 2022, 130, 436-41.
93. Janovec, V. On the theory of the coercive field of single-domain crystals of BaTiO3. Czech. J. Phys. 1958, 8, 3-15.
94. Ke, C.; Hu, Y.; Liu, S. Depolarization induced III-V triatomic layers with tristable polarization states. Nanoscale. Horiz. 2023, 8, 616-23.
95. Mizuno, T.; Umeda, K.; Aida, Y.; Honda, A.; Akiyama, M.; Nagase, T. Germanium aluminum nitride thin films for piezo-MEMS devices. In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan; 2017, pp. 1891-4.
96. Song, Y.; Perez, C.; Esteves, G.; et al. Thermal conductivity of aluminum scandium nitride for 5G mobile applications and beyond. ACS. Appl. Mater. Interfaces. 2021, 13, 19031-41.
97. Tagantsev, A. K. Comment on "Ab initio study of the spontaneous polarization of pyroelectric BeO". Phys. Rev. Lett. 1992, 69, 389.
98. Posternak, M.; Baldereschi, A.; Catellani, A.; Resta, R. Ab initio study of the spontaneous polarization of pyroelectric BeO. Phys. Rev. Lett. 1990, 64, 1777-80.
99. Martin, R. M. Comment on calculations of electric polarization in crystals. Phys. Rev. B. 1974, 9, 1998-9.
101. Bernardini, F.; Fiorentini, V.; Vanderbilt, D. Accurate calculation of polarization-related quantities in semiconductors. Phys. Rev. B. 2001, 63, 193201.
102. Yoo, S.; Todorova, M.; Neugebauer, J.; Van de Walle, C. G. Microscopic origin of polarization charges at GaN/(Al,Ga)N interfaces. Phys. Rev. Appl. 2023, 19, 064037.
103. Strak, P.; Kempisty, P.; Sakowski, K.; et al. Polarization spontaneous and piezo: fundamentals and their implementation in ab initio calculations. ArXiv 2024, 2407.01134.
104. Uehara, M.; Mizutani, R.; Yasuoka, S.; et al. Lower ferroelectric coercive field of ScGaN with equivalent remanent polarization as ScAlN. Appl. Phys. Express. 2022, 15, 081003.
105. Lee, C.; Din, N. U.; Yazawa, K.; Brennecka, G. L.; Zakutayev, A.; Gorai, P. Emerging materials and design principles for wurtzite-type ferroelectrics. Matter 2024, 7, 1644-59.
106. Gall, D.; Städele, M.; Järrendahl, K.; et al. Electronic structure of ScN determined using optical spectroscopy, photoemission, and ab initio calculations. Phys. Rev. B. 2001, 63, 1251191-9.
107. Gall, D.; Petrov, I.; Greene, J. E. Epitaxial Sc1-xTixN(001): optical and electronic transport properties. J. Appl. Phys. 2001, 89, 401-9.
108. Fiorentini, V.; Bernardini, F.; Ambacher, O. Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures. Appl. Phys. Lett. 2002, 80, 1204-6.
109. Wu, J.; Walukiewicz, W.; Yu, K. M.; et al. Small band gap bowing in In1-xGaxN alloys. Appl. Phys. Lett. 2002, 80, 4741-3.
110. Wolff, N.; Fichtner, S.; Haas, B.; et al. Atomic scale confirmation of ferroelectric polarization inversion in wurtzite-type AlScN. J. Appl. Phys. 2021, 129, 034103.
111. Schönweger, G.; Petraru, A.; Islam, M. R.; et al. From fully strained to relaxed: epitaxial ferroelectric Al1-xScxN for III-N technology. Adv. Funct. Mater. 2022, 32, 2109632.
112. Uehara, M.; Mizutani, R.; Yasuoka, S.; et al. Demonstration of ferroelectricity in ScGaN thin film using sputtering method. Appl. Phys. Lett. 2021, 119, 172901.
113. Wang, D.; Wang, P.; Wang, B.; Mi, Z. Fully epitaxial ferroelectric ScGaN grown on GaN by molecular beam epitaxy. Appl. Phys. Lett. 2021, 119, 111902.
114. Wang, D.; Wang, P.; Mondal, S.; Xiao, Y.; Hu, M.; Mi, Z. Impact of dislocation density on the ferroelectric properties of ScAlN grown by molecular beam epitaxy. Appl. Phys. Lett. 2022, 121, 042108.
115. Dinh, D. V.; Lähnemann, J.; Geelhaar, L.; Brandt, O. Lattice parameters of ScxAl1-xN layers grown on GaN(0001) by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 2023, 122, 152103.
116. Zhang, D.; Jin, L.; Li, J.; et al. MBE growth of ultra-thin GeSn film with high Sn content and its infrared/terahertz properties. J. Alloys. Compd. 2016, 665, 131-6.
117. Zeng, Y.; Lei, Y.; Wang, Y.; et al. High quality epitaxial piezoelectric and ferroelectric Wurtzite Al1-xScxN thin films. Small. Methods. 2025, 9, e2400722.
118. Tang, M.; Dai, L.; Cheng, M.; et al. High-throughput screening thickness-dependent resistive switching in SrTiO3 thin films for robust electronic synapse. Adv. Funct. Mater. 2023, 33, 2213874.
119. Yang, Y.; Li, X.; Zhou, D.; et al. Effects of temperature on PO and resistivity of ScAlN film. Surf. Eng. 2015, 31, 775-8.
120. Zukauskaite, A.; Wingqvist, G.; Palisaitis, J.; et al. Microstructure and dielectric properties of piezoelectric magnetron sputtered w-ScxAl1−xN thin films. J. Appl. Phys. 2012, 111, 093527.
121. Pérez-Campos, A.; Sinusía, L. M.; Garcia-Garcia, F. J.; Chen, Z.; Iriarte, G. F. Synthesis of ScAlN thin films on Si (100) substrates at room temperature. Microsyst. Technol. 2018, 24, 2711-8.
122. van der Wel, B. Y.; van der Zouw, K.; Aarnink, A. A. I.; Kovalgin, A. Y. Area-Selective low-pressure thermal atomic layer deposition of aluminum nitride. J. Phys. Chem. C. 2023, 127, 17134-45.
123. Bartram, M. E.; Michalske, T. A.; Rogers, J. W.; Paine, R. T. Nucleation and growth of aluminum nitride: self-limiting reactions and the regeneration of active sites using sequential exposures of trimethylaluminum and ammonia on silica at 600 K. Chem. Mater. 1993, 5, 1424-30.
124. Detavernier, C.; Dendooven, J.; Deduytsche, D.; Musschoot, J. Thermal versus plasma-enhanced ALD: growth kinetics and conformality. ECS. Trans. 2008, 16, 239.
125. Bui, H. V.; Nguyen, M. D.; Wiggers, F. B.; Aarnink, A. A. I.; de Jong, M. P.; Kovalgin, A. Y. Self-limiting growth and thickness- and temperature- dependence of optical constants of ALD AlN thin films. ECS. J. Solid. State. Sci. Technol. 2014, 3, 101-6.
126. Seppänen, H.; Kim, I.; Etula, J.; Ubyivovk, E.; Bouravleuv, A.; Lipsanen, H. Aluminum nitride transition layer for power electronics applications grown by plasma-enhanced atomic layer deposition. Materials 2019, 12, 406.
127. Schilirò, E.; Giannazzo, F.; Di, F. S.; et al. Highly homogeneous current transport in ultra-thin aluminum nitride (AlN) epitaxial films on gallium nitride (GaN) deposited by plasma enhanced atomic layer deposition. Nanomaterials 2021, 11, 3316.
128. Samii, R.; Zanders, D.; Buttera, S. C.; et al. Synthesis and thermal study of hexacoordinated Aluminum(III) triazenides for use in atomic layer deposition. Inorg. Chem. 2021, 60, 4578-87.
129. Rouf, P.; Samii, R.; Rönnby, K.; et al. Hexacoordinated Gallium(III) triazenide precursor for epitaxial gallium nitride by atomic layer deposition. Chem. Mater. 2021, 33, 3266-75.
130. Pedersen, H.; Hsu, C. W.; Nepal, N.; Woodward, J. M.; Eddy, C. R. J. Atomic layer deposition as the enabler for the metastable semiconductor InN and its alloys. Cryst. Growth. Des. 2023, 23, 7010-25.
131. Seppänen, H.; Prozheev, I.; Kauppinen, C.; Suihkonen, S.; Mizohata, K.; Lipsanen, H. Effect of atomic layer annealing in plasma-enhanced atomic layer deposition of aluminum nitride on silicon. J. Vac. Sci. Technol. A. 2023, 41, 052401.
132. Shih, H. Y.; Lee, W. H.; Kao, W. C.; et al. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing. Sci. Rep. 2017, 7, 39717.
133. Kao, W.; Jhong, F.; Yin, Y.; Lin, H.; Chen, M. High-quality AlN epilayers prepared by atomic layer deposition and large-area rapid electron beam annealing. Mater. Chem. Phys. 2023, 304, 127895.
134. Available from: https://www.atomiclimits.com/alddatabase/ [Last accessed on 28 Jul 2025].
135. Nepal, N.; Anderson, V. R.; Hite, J. K.; Eddy, C. R. Growth and characterization of III-N ternary thin films by plasma assisted atomic layer epitaxy at low temperatures. Thin. Solid. Films. 2015, 589, 47-51.
136. Tian, L.; Ponton, S.; Benz, M.; et al. Aluminum nitride thin films deposited by hydrogen plasma enhanced and thermal atomic layer deposition. Surf. Coat. Technol. 2018, 347, 181-90.
137. Ozgit, C.; Donmez, I.; Alevli, M.; Biyikli, N. Self-limiting low-temperature growth of crystalline AlN thin films by plasma-enhanced atomic layer deposition. Thin. Solid. Films. 2012, 520, 2750-5.
138. Kot, M.; Henkel, K.; Naumann, F.; et al. Comparison of plasma-enhanced atomic layer deposition AlN films prepared with different plasma sources. J. Vac. Sci. Technol. A. 2019, 37, 020913.
139. Ligl, J.; Leone, S.; Manz, C.; et al. Metalorganic chemical vapor phase deposition of AlScN/GaN heterostructures. J. Appl. Phys. 2020, 127, 195704.
140. Frei, K.; Trejo-Hernández, R.; Schütt, S.; et al. Investigation of growth parameters for ScAlN-barrier HEMT structures by plasma-assisted MBE. Jpn. J. Appl. Phys. 2019, 58, SC1045.
141. Wang, D.; Zheng, J.; Musavigharavi, P.; Zhu, W.; Foucher, A. C.; McKinstry, S. E. T. Ferroelectric switching in sub-20 nm aluminum scandium nitride thin films. IEEE. Electron. Device. Lett. 2020, 41, 1774-7.
142. Kataoka, J.; Tsai, S.; Hoshii, T.; Wakabayashi, H.; Tsutsui, K.; Kakushima, K. A possible origin of the large leakage current in ferroelectric Al1-xScxN films. Jpn. J. Appl. Phys. 2021, 60, 030907.
143. Chen, S.; Tsai, S.; Mizutani, K.; et al. GaN high electron mobility transistors (HEMTs) with self-upward-polarized AlScN gate dielectrics toward enhancement-mode operation. Jpn. J. Appl. Phys. 2022, 61, SH1007.
144. Ryoo, S. K.; Kim, K. D.; Park, H. W.; et al. Investigation of optimum deposition conditions of radio frequency reactive magnetron sputtering of Al0.7Sc0.3N film with thickness down to 20 nm. Adv. Electron. Mater. 2022, 8, 2200726.
145. Wang, P.; Wang, D.; Vu, N. M.; Chiang, T.; Heron, J. T.; Mi, Z. Fully epitaxial ferroelectric ScAlN grown by molecular beam epitaxy. Appl. Phys. Lett. 2021, 118, 223504.
146. Liu, Z.; Luo, B.; Hou, B. Coexistence of ferroelectricity and ferromagnetism in Ni-doped Al0.7Sc0.3N thin films. Appl. Phys. Lett. 2022, 120, 252904.
147. Hardy, M. T.; Downey, B. P.; Nepal, N.; Storm, D. F.; Katzer, D. S.; Meyer, D. J. Epitaxial ScAlN grown by molecular beam epitaxy on GaN and SiC substrates. Appl. Phys. Lett. 2017, 110, 162104.
148. Hardy, M. T.; Jin, E. N.; Nepal, N.; et al. Control of phase purity in high scandium fraction heteroepitaxial ScAlN grown by molecular beam epitaxy. Appl. Phys. Express. 2020, 13, 065509.
149. Sandu, C. S.; Parsapour, F.; Mertin, S.; et al. Abnormal grain growth in AlScN thin films induced by complexion formation at crystallite interfaces. Phys. Status. Solid. 2019, 216, 1800569.
150. Wang, J.; Park, M.; Mertin, S.; Pensala, T.; Ayazi, F.; Ansari, A. A film bulk acoustic resonator based on ferroelectric aluminum scandium nitride films. J. Microelectromech. Syst. 2020, 29, 741-7.