1. Chen M, Rao P, Miao Z, et al. Strong metal-support interaction of Pt-based electrocatalysts with transition metal oxides/nitrides/carbides for oxygen reduction reaction. Microstructures 2023;3:2023025.
2. Liu N, Liu Y, Liu Y, Li Y, Cheng Y, Li H. Modulation of photogenerated holes for enhanced photoelectrocatalytic performance. Microstructures 2022;3:2023001.
3. Zhou A, Wang D, Li Y. Hollow microstructural regulation of single-atom catalysts for optimized electrocatalytic performance. Microstructures 2022;2:2022005.
4. He T, Puente-santiago AR, Xia S, Ahsan MA, Xu G, Luque R. Experimental and theoretical advances on single atom and atomic cluster-decorated low-dimensional platforms towards superior electrocatalysts. Adv Energy Mater 2022;12:2200493.
5. Zhao X, Li J, Kong X, et al. Carbon dots mediated in situ confined growth of Bi clusters on g-C3N4 nanomeshes for boosting plasma-assisted photoreduction of CO2. Small 2022;18:e2204154.
6. Ahsan MA, He T, Noveron JC, Reuter K, Puente-Santiago AR, Luque R. Low-dimensional heterostructures for advanced electrocatalysis: an experimental and computational perspective. Chem Soc Rev 2022;51:812-28.
7. Kong Y, Li X, Puente Santiago AR, He T. Nonmetal atom doping induced orbital shifts and charge modulation at the edge of two-dimensional boron carbonitride leading to enhanced photocatalytic nitrogen reduction. J Am Chem Soc 2024;146:5987-97.
8. He T, Exner KS. Computational electrochemistry focusing on nanostructured catalysts: challenges and opportunities. Mater Today Energy 2022;28:101083.
9. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238:37-8.
10. Guo Q, Zhou C, Ma Z, Yang X. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater 2019;31:e1901997.
11. Dakhel AA. Hydrogenation influences on the structural, optical, and insulating properties of (Bi+Cr) codoped anatase TiO2 nanoparticles. Cryst Res Technol 2023;58:2300016.
12. Nolan M, Iwaszuk A, Lucid AK, Carey JJ, Fronzi M. Design of novel visible light active photocatalyst materials: surface modified TiO2. Adv Mater 2016;28:5425-46.
13. Guo P, Fu X, Deák P, Frauenheim T, Xiao J. Activity and mechanism mapping of photocatalytic NO2 conversion on the anatase TiO2(101) surface. J Phys Chem Lett 2021;12:7708-16.
14. Alcudia-ramos M, Fuentez-torres M, Ortiz-chi F, et al. Fabrication of g-C3N4/TiO2 heterojunction composite for enhanced photocatalytic hydrogen production. Ceram Int 2020;46:38-45.
15. Zhou L, Zhang X, Cai M, Cui N, Chen G, Zou G. New insights into the efficient charge transfer of the modified-TiO2/Ag3PO4 composite for enhanced photocatalytic destruction of algal cells under visible light. Appl Catal B Environ 2022;302:120868.
16. Xia B, He B, Zhang J, et al. TiO2 /FePS3 S-scheme heterojunction for greatly raised photocatalytic hydrogen evolution. Adv Energy Mater 2022;12:2201449.
17. Wei L, Yu C, Zhang Q, Liu H, Wang Y. TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels. J Mater Chem A 2018;6:22411-36.
18. Xu F, Zhang J, Zhu B, Yu J, Xu J. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Appl Catal B Environ 2018;230:194-202.
19. Eidsvåg H, Bentouba S, Vajeeston P, Yohi S, Velauthapillai D. TiO2 as a photocatalyst for water splitting-an experimental and theoretical review. Molecules 2021;26:1687.
20. Li K, Teng C, Wang S, Min Q. Recent advances in TiO2-based heterojunctions for photocatalytic CO2 reduction with water oxidation: a review. Front Chem 2021;9:637501.
21. Ijaz M, Zafar M. Titanium dioxide nanostructures as efficient photocatalyst: progress, challenges and perspective. Int J Energy Res 2021;45:3569-89.
22. Gao J, Xue J, Shen Q, et al. A promoted photocatalysis system trade-off between thermodynamic and kinetic via hierarchical distribution dual-defects for efficient H2 evolution. Chem Eng J 2022;431:133281.
23. An X, Wei T, Ding P, et al. Sodium-directed photon-induced assembly strategy for preparing multisite catalysts with high atomic utilization efficiency. J Am Chem Soc 2023;145:1759-68.
24. Wang W, Li G, An T, Chan DK, Yu JC, Wong PK. Photocatalytic hydrogen evolution and bacterial inactivation utilizing sonochemical-synthesized g-C3N4/red phosphorus hybrid nanosheets as a wide-spectral-responsive photocatalyst: the role of type I band alignment. Appl Catal B Environ 2018;238:126-35.
25. Huang Z, Zhao S, Yu Y. Experimental method to explore the adaptation degree of type-II and all-solid-state Z-scheme heterojunction structures in the same degradation system. Chinese J Catal 2020;41:1522-34.
26. Hyun JK, Zhang S, Lauhon LJ. Nanowire heterostructures. Annu Rev Mater Res 2013;43:451-79.
27. Kuang X, Deng X, Ma Y, et al. Type II heterojunction promotes photoinduced effects of TiO2 for enhancing photocatalytic performance. J Mater Chem C 2022;10:6341-7.
28. Xia C, Guo RT, Bi ZX, Zhang ZR, Li CF, Pan WG. A dual Z-scheme heterojunction Cu-CuTCPP/Cu2O/CoAl-LDH for photocatalytic CO2 reduction to C1 and C2 products. Dalton Trans 2023;52:12742-54.
29. Xu Q, Zhang L, Cheng B, Fan J, Yu J. S-Scheme heterojunction photocatalyst. Chem 2020;6:1543-59.
30. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Heterojunction photocatalysts. Adv Mater 2017;29:1601694.
31. Zhao Y, Linghu X, Shu Y, et al. Classification and catalytic mechanisms of heterojunction photocatalysts and the application of titanium dioxide (TiO2)-based heterojunctions in environmental remediation. J Environ Chem Eng 2022;10:108077.
32. Shi W, Chopra N. Nanoscale heterostructures for photoelectrochemical water splitting and photodegradation of pollutants. Nanomater Energy 2013;2:158-78.
33. Cao J, Zhang J, Guo W, et al. A type-I heterojunction by anchoring ultrafine Cu2O on defective TiO2 framework for efficient photocatalytic H2 production. Ind Eng Chem Res 2023;62:1310-21.
34. Luo X, Ke Y, Yu L, et al. Tandem CdS/TiO2(B) nanosheet photocatalysts for enhanced H2 evolution. Appl Surf Sci 2020;515:145970.
35. Park J, Lee TH, Kim C, et al. Hydrothermally obtained type-II heterojunction nanostructures of In2S3/TiO2 for remarkably enhanced photoelectrochemical water splitting. Appl Catal B Environ 2021;295:120276.
36. Zhou BX, Ding SS, Wang Y, et al. Type-II/type-II band alignment to boost spatial charge separation: a case study of g-C3N4 quantum dots/a-TiO2/r-TiO2 for highly efficient photocatalytic hydrogen and oxygen evolution. Nanoscale 2020;12:6037-46.
37. Yang W, Hou H, Yang Y, et al. MXene-derived anatase-TiO2/rutile-TiO2/In2O3 heterojunctions toward efficient hydrogen evolution. Colloids Surf A 2022;652:129881.
38. Li H, Chen ZH, Zhao L, Yang GD. Synthesis of TiO2@ZnIn2S4 hollow nanospheres with enhanced photocatalytic hydrogen evolution. Rare Met 2019;38:420-7.
39. Zhang L, Huang Y, Dai C, et al. Constructing ZnO/ZnCr2O4@TiO2-NTA nanocomposite for photovoltaic conversion and photocatalytic hydrogen evolution. J Electron Mater 2019;48:1724-9.
40. Huang K, Li C, Meng X. In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution. J Colloid Interface Sci 2020;580:669-80.
41. Sadeghzadeh-Attar A. Boosting the photocatalytic ability of hybrid BiVO4-TiO2 heterostructure nanocomposites for H2 production by reduced graphene oxide (rGO). J Taiwan Inst Chem Eng 2020;111:325-36.
42. Qin Y, Li H, Lu J, et al. Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Chem Eng J 2020;384:123275.
43. Niu M, Sui K, Wu X, Cao D, Liu C. GaAs quantum dot/TiO2 heterojunction for visible-light photocatalytic hydrogen evolution: promotion of oxygen vacancy. Adv Compos Hybrid Mater 2022;5:450-60.
44. Peng H, Yong J, Wang H, Gou Y, Wang F, Zheng X. Dual CdS-CoS/S,N-doped TiO2 nanofibers for efficient visible-light induced H2 evolution. Int J Hydrogen Energy 2022;47:31269-78.
45. Liu D, Liang H, Li C, Bai J. CdS nanoparticles with highly exposed (111) facets decorated on Pt/TiO2 nanotubes for highly efficient photocatalytic H2 evolution. Appl Surf Sci 2022;586:152711.
46. Lin Y, Fang W, Xv R, Fu L. TiO2 nanoparticles modified with ZnIn2S4 nanosheets and Co-Pi groups: type II heterojunction and cocatalysts coexisted photoanode for efficient photoelectrochemical water splitting. Int J Hydrogen Energy 2022;47:33361-73.
47. Huo Y, Tian Y, Hu T, et al. CdS-loaded three-dimensional ordered macroporous composite material In2O3-TiO2: construction of type II heterostructure and enhancement of photocatalytic performance. Appl Catal A Gen 2023;652:119042.
48. Yavuz C, Ela SE. Fabrication of g g-C3N4-reinforced CdS nanosphere-decorated TiO2 nanotablet composite material for photocatalytic hydrogen production and dye-sensitized solar cell application. J Alloys Compd 2023;936:168209.
49. Ding Y, Zhang J, Yang Y, et al. Fully-depleted dual P-N heterojunction with type-II band alignment and matched build-in electric field for high-efficient photocatalytic hydrogen production. Int J Hydrogen Energy 2021;46:36069-79.
50. Liu J, Sun X, Fan Y, et al. P-N heterojunction embedded CuS/TiO2 bifunctional photocatalyst for synchronous hydrogen production and benzylamine conversion. Small 2024;20:e2306344.
51. Wang Y, Zhu C, Zuo G, et al. 0D/2D Co3O4/TiO2 Z-scheme heterojunction for boosted photocatalytic degradation and mechanism investigation. Appl Catal B Environ 2020;278:119298.
52. Wang Z, Lin Z, Shen S, Zhong W, Cao S. Advances in designing heterojunction photocatalytic materials. Chin J Catal 2021;42:710-30.
53. Xing C, Liu Y, Zhang Y, et al. A direct Z-scheme for the photocatalytic hydrogen production from a water ethanol mixture on CoTiO3/TiO2 heterostructures. ACS Appl Mater Interfaces 2021;13:449-57.
54. Wang L, Tang G, Liu S, et al. Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution. Chem Eng J 2022;428:131338.
55. Chen B, Yu J, Wang R, et al. Three-dimensional ordered macroporous g-C3N4-Cu2O-TiO2 heterojunction for enhanced hydrogen production. Sci China Mater 2022;65:139-46.
56. Qiu D, He C, Lu Y, Li Q, Chen Y, Cui X. Assembling γ-graphyne surrounding TiO2 nanotube arrays: an efficient p-n heterojunction for boosting photoelectrochemical water splitting. Dalton Trans 2021;50:15422-32.
57. Zheng D, Zhao H, Wang S, Hu J, Chen Z. NiO-TiO2 p-n heterojunction for solar hydrogen generation. Catalysts 2021;11:1427.
58. Feng K, Sun T, Hu X, Fan J, Yang D, Liu E. 0D/2D Co0.85Se/TiO2 p-n heterojunction for enhanced photocatalytic H2 evolution. Catal Sci Technol 2022;12:4893-902.
59. Huang W, Fu Z, Hu X, Wang Q, Fan J, Liu E. Efficient photocatalytic hydrogen evolution over Cu3Mo2O9/TiO2 p-n heterojunction. J Alloys Compd 2022;904:164089.
60. Pan J, Xiao G, Niu J, et al. The photocatalytic hydrogen evolution and photoreduction CO2 selective enhancement of Co3O4/Ti3+-TiO2/NiO hollow core-shell dual pn junction. J Clean Prod 2022;380:135037.
61. Dhileepan MD, Lakhera SK, Neppolian B. Interface engineering of 0D-1D Cu2NiSnS4/TiO2(B) p-n heterojunction nanowires for efficient photocatalytic hydrogen evolution. Catal Today 2023;423:114006.
62. Yuan X, Tang S, Liu X. A Li-F co-doped g-C3N4/TiO2-B (001) heterostructure as an efficient hydrogen evolution photocatalyst. Sustain Energy Fuels 2023;7:1633-44.
63. Wang C, Xiong J, Wen Z, Cheng G. Integrated Ni(OH)2-TiO2-Cu2O hybrids with a synergic impact of the p-n heterojunction/cocatalyst for enhanced photocatalytic hydrogen production. Ind Eng Chem Res 2023;62:11402-13.
64. Eisapour M, Zhao H, Zhao J, et al. p-n heterojunction of nickel oxide on titanium dioxide nanosheets for hydrogen and value-added chemicals coproduction from glycerol photoreforming. J Colloid Interface Sci 2023;647:255-63.
65. Bai S, Jiang J, Zhang Q, Xiong Y. Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem Soc Rev 2015;44:2893-939.
66. Han X, Dong Y, Zhao J, Ming S, Xie Y. Construction of ternary Z-scheme covalent triazine framework@Au@TiO2 for enhanced visible-light-driven hydrogen evolution activity. Int J Hydrogen Energy 2022;47:18334-46.
67. Wang X, Liu G, Chen ZG, et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chem Commun 2009;23:3452-4.
68. Yu J, Wang S, Low J, Xiao W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys Chem Chem Phys 2013;15:16883-90.
69. Ran J, Chen L, Wang D, et al. Atomic-level regulated 2D ReSe2: a universal platform boostin photocatalysis. Adv Mater 2023;35:2210164.
70. Moon HS, Hsiao KC, Wu MC, Yun Y, Hsu YJ, Yong K. Spatial separation of cocatalysts on z-scheme organic/inorganic heterostructure hollow spheres for enhanced photocatalytic H2 evolution and in-depth analysis of the charge-transfer mechanism. Adv Mater 2023;35:e2200172.
71. Zuo G, Wang Y, Teo WL, Xian Q, Zhao Y. Direct Z-scheme TiO2-ZnIn2S4 nanoflowers for cocatalyst-free photocatalytic water splitting. Appl Catal B Environ 2021;291:120126.
72. Sun F, Xie Y, Xu D, et al. Electrospun self-supporting double Z-scheme tricolor-typed microfiber oriented-heterostructure photocatalyst with highly effective hydrogen evolution and organic pollutants degradation. J Environ Chem Eng 2023;11:109169.
73. Wang J, Wang G, Wang X, Wu Y, Su Y, Tang H. 3D/2D direct Z-scheme heterojunctions of hierarchical TiO2 microflowers/g-C3N4 nanosheets with enhanced charge carrier separation for photocatalytic H2 evolution. Carbon 2019;149:618-26.
74. Ke X, Zhang J, Dai K, Liang C. Construction of flourinated-TiO2 nanosheets with exposed {001} facets/CdSe-DETA nanojunction for enhancing visible-light-driven photocatalytic H2 evolution. Ceram Int 2020;46:866-76.
75. Zhang M, Piao C, Wang D, et al. Fixed Z-scheme TiO2|Ti|WO3 composite film as recyclable and reusable photocatalyst for highly effective hydrogen production. Opt Mater 2020;99:109545.
76. Drmosh Q, Hezam A, Hendi A, Qamar M, Yamani Z, Byrappa K. Ternary Bi2S3/MoS2/TiO2 with double Z-scheme configuration as high performance photocatalyst. Appl Surf Sci 2020;499:143938.
77. Subha N, Mahalakshmi M, Monika S, Neppolian B. Ni(OH)2-CuxO-TiO2 nanocomposite for the enhanced H2 production under solar light: the mechanistic pathway. Int J Hydrogen Energy 2020;45:7552-61.
78. Du Y, Wang N, Li X, et al. A facile synthesis of C3N4-modified TiO2 nanotube embedded Pt nanoparticles for photocatalytic water splitting. Res Chem Intermed 2021;47:5175-88.
79. Zhang Y, Liu M, Chen J, Xie K, Fang S. Dendritic branching Z-scheme Cu2O/TiO2 heterostructure photocatalysts for boosting H2 production. J Phys Chem Solids 2021;152:109948.
80. Priya B, Sivakumar T, Venkateswari P. Construction of MoS2 nanoparticles incorporated TiO2 nanosheets heterojunction photocatalyst for enhanced visible light driven hydrogen production. Inorg Chem Comm 2022;136:109118.
81. Du R, Li B, Han X, et al. 2D/2D Heterojunction of TiO2 nanoparticles and ultrathin G-C3N4 nanosheets for efficient photocatalytic hydrogen evolution. Nanomaterials 2022;12:1557.
82. He Y, Zheng H, Lv T, et al. MOFs-derived TiO2 composite ZnIn2S4 to construct Z-scheme heterojunction for efficient photocatalytic hydrogen evolution under visible light. J Environ Chem Eng 2023;11:111224.
83. Wang YQ, Yang C, Gan LH. Preparation of direct Z-scheme Bi2WO6/TiO2 heterojunction by one-step solvothermal method and enhancement mechanism of photocatalytic H2 production. Int J Hydrogen Energy 2023;48:19372-84.
84. Zhao SZ, Lu R, Yang Y, Lu Y, Rodriguez RD, Chen JJ. Direct Z-scheme g-C3N4/TiO2 heterojunction porous nanotubes: an ingenious synthesis strategy to enhance photocatalytic activity. J Environ Chem Eng 2023;11:109366.
85. Zhu Y, Ren J, Huang G, et al. Red phosphorus grafted high-index (116) faceted anatase TiO2 for Z-scheme photocatalytic pure water splitting. Adv Funct Mater 2024;34:2311623.
86. Zhang L, Zhang J, Yu H, Yu J. Emerging S-scheme photocatalyst. Adv Mater 2022;34:e2107668.
87. Li T, Tsubaki N, Jin Z. S-scheme heterojunction in photocatalytic hydrogen production. J Mater Sci Technol 2024;169:82-104.
88. Bootluck W, Chittrakarn T, Techato K, Jutaporn P, Khongnakorn W. S-Scheme α-Fe2O3/TiO2 photocatalyst with Pd cocatalyst for enhanced photocatalytic H2 production activity and stability. Catal Lett 2022;152:2590-606.
89. Dong G, Zhang Y, Wang Y, et al. Ti3C2 quantum dots modified 3D/2D TiO2/g-C3N4 S-scheme heterostructures for highly efficient photocatalytic hydrogen evolution. ACS Appl Energy Mater 2021;4:14342-51.
90. Chen L, Song XL, Ren JT, Yuan ZY. Precisely modifying Co2P/black TiO2 S-scheme heterojunction by in situ formed P and C dopants for enhanced photocatalytic H2 production. Appl Catal B Environ 2022;315:121546.
91. Dai X, Feng S, Wu W, et al. Photocatalytic hydrogen evolution and antibiotic degradation by S-scheme ZnCo2S4/TiO2. Int J Hydrogen Energy 2022;47:25104-16.
92. Huang W, Xue W, Hu X, Fan J, Tang C, Liu E. Photocatalytic H2 production over S-scheme Co3Se4/TiO2 nanosheet with super-hydrophilic surface. Appl Surf Sci 2022;599:153900.
93. Li J, Wu C, Li J, Dong B, Zhao L, Wang S. 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution. Chin J Catal 2022;43:339-49.
94. Liu J, Wan J, Liu L, et al. Synergistic effect of oxygen defect and doping engineering on S-scheme O-ZnIn2S4/TiO2-x heterojunction for effective photocatalytic hydrogen production by water reduction coupled with oxidative dehydrogenation. Chem Eng J 2022;430:133125.
95. Vignesh S, Chandrasekaran S, Srinivasan M, et al. T TiO2-CeO2/g-C3N4 S-scheme heterostructure composite for enhanced photo-degradation and hydrogen evolution performance with combined experimental and DFT study. Chemosphere 2022;288:132611.
96. Gui X, Zhou Y, Liang Q, et al. Construction of porous ZnS/TiO2 S-scheme heterostructure derived from MOF-on-MOF with boosting photocatalytic H2-generation activity. Int J Hydrogen Energy 2023;48:38237-50.
97. Huang W, Xue W, Hu X, et al. A S-scheme heterojunction of Co9S8 decorated TiO2 for enhanced photocatalytic H2 evolution. J Alloys Compd 2023;930:167368.
98. Wu X, Chen G, Wang J, Li J, Wang G. Review on S-scheme heterojunctions for photocatalytic hydrogen evolution. Acta Phys Chim Sin 2023;39:2212016.
99. Li D, Li R, Zhou D, Qin X, Yan W. S-scheme TiO2/ZnS heterojunction as dual-reaction sites: a high-efficiency and spontaneous photocatalyst for hydrogen production under light irradiation. Vacuum 2023;210:111906.
100. Navakoteswara Rao V, Kwon H, Lee Y, et al. Synergistic integration of MXene nanosheets with CdS@TiO2 core@shell S-scheme photocatalyst for augmented hydrogen generation. Chem Eng J 2023;471:144490.
101. Ruan X, Meng D, Huang C, et al. Artificial photosynthetic system with spatial dual reduction site enabling enhanced solar hydrogen production. Adv Mater 2024;36:e2309199.
102. Wang K, Luo Z, Xiao B, et al. S-scheme Cu3P/TiO2 heterojunction for outstanding photocatalytic water splitting. J Colloid Interface Sci 2023;652:1908-16.
103. Chen S, Sheng X, Wang Y, et al. Thermally assisted in situ synthesis of C3N5/TiO2 S-scheme heterojunctions with enhanced visible light response for photocatalytic hydrogen precipitation. Appl Surf Sci 2024;643:158600.
104. Tang Y, Liu Q, Lei J, et al. MoS2/TiO2 van der Waals heterostructures for promising photocatalytic performance: a first-principles study. Mater Res Express 2022;9:105502.
105. Wei N, Liu Y, Feng M, et al. Controllable TiO2 core-shell phase heterojunction for efficient photoelectrochemical water splitting under solar light. Appl Catal B Environ 2019;244:519-28.
106. Chen HJ, Yang YL, Zou XX, Shi XL, Chen ZG. Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis. J Mater Sci Technol 2022;98:143-50.
107. Li W, Zhang H, Hong M, et al. Defective RuO2/TiO2 nano-heterostructure advances hydrogen production by electrochemical water splitting. Chem Eng J 2022;431:134072.
108. Di Liberto G, Tosoni S, Illas F, et al. Nature of SrTiO3/TiO2 (anatase) heterostructure from hybrid density functional theory calculations. J Chem Phys 2020;152:184704.
109. Chen W, Yuan P, Zhang S, Sun Q, Liang E, Jia Y. Electronic properties of anatase TiO2 doped by lanthanides: A DFT+U study. Phys B Condens Matter 2012;407:1038-43.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.