1. Foster SL, Bakovic SIP, Duda RD, et al. Catalysts for nitrogen reduction to ammonia. Nat Catal 2018;1:490-500.
2. Shi L, Yin Y, Wang S, Sun H. Rational catalyst design for N2 reduction under ambient conditions: strategies toward enhanced conversion efficiency. ACS Catal 2020;10:6870-99.
3. Deng J, Iñiguez JA, Liu C. Electrocatalytic nitrogen reduction at low temperature. Joule 2018;2:846-56.
4. Wan Y, Xu J, Lv R. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater Today 2019;27:69-90.
5. Montoya JH, Tsai C, Vojvodic A, Nørskov JK. The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem 2015;8:2180-6.
6. Wang Y, Su H, He Y, et al. Advanced electrocatalysts with single-metal-atom active sites. Chem Rev 2020;120:12217-314.
7. Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 2011;3:634-41.
8. Zhang J, Liu C, Zhang B. Insights into single-atom metal–support interactions in electrocatalytic water splitting. Small Methods 2019;3:1800481.
9. Song Z, Zhang L, Doyle-Davis K, Fu X, Luo J, Sun X. Recent advances in MOF-derived single atom catalysts for electrochemical applications. Adv Energy Mater 2020;10:2001561.
10. Yu H, Wang Z, Tian W, et al. Boosting electrochemical nitrogen fixation by mesoporous Rh film with boron and sulfur co-doping. Mater Today Energy 2021;20:100681.
11. Cai L, Zhang N, Qiu B, Chai Y. Computational design of transition metal single-atom electrocatalysts on PtS2 for efficient nitrogen reduction. ACS Appl Mater Interfaces 2020;12:20448-55.
12. van der Ham CJ, Koper MT, Hetterscheid DG. Challenges in reduction of dinitrogen by proton and electron transfer. Chem Soc Rev 2014;43:5183-91.
13. Shipman MA, Symes MD. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal Today 2017;286:57-68.
14. Wang Q, Lei Y, Wang D, Li Y. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ Sci 2019;12:1730-50.
15. Han S, Wei X, Huang Y, Zhang J, Yang J, Wang Z. Tuning the activity and selectivity of nitrogen reduction reaction on double-atom catalysts by B doping: a density functional theory study. Nano Energy 2022;99:107363.
16. Han J, Bao H, Wang J, et al. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl Catal B Environ 2021;280:119411.
17. Yang L, Zhang X, Yu L, Hou J, Zhou Z, Lv R. Atomic Fe-N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn-air batteries with stable cycling over 1000 h. Adv Mater 2022;34:2105410.
18. Chu C, Huang D, Gupta S, et al. Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nat Commun 2021;12:5179.
19. Wu ZY, Karamad M, Yong X, et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat Commun 2021;12:2870.
20. Wu J, Zhou H, Li Q, et al. Densely populated isolated single Co–N site for efficient oxygen electrocatalysis. Adv Energy Mater 2019;9:1900149.
21. Rong X, Wang HJ, Lu XL, Si R, Lu TB. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew Chem Int Ed Engl 2020;59:1961-5.
22. Yuan K, Lützenkirchen-Hecht D, Li L, et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination. J Am Chem Soc 2020;142:2404-12.
23. Wang Z, Jin X, Xu R, et al. Cooperation between dual metal atoms and nanoclusters enhances activity and stability for oxygen reduction and evolution. ACS Nano 2023;17:8622-33.
24. Tamtaji M, Cai S, Wu W, et al. Single and dual metal atom catalysts for enhanced singlet oxygen generation and oxygen reduction reaction. J Mater Chem A 2023;11:7513-25.
25. Chen W, Pei J, He CT, et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv Mater 2018;30:1800396.
26. Wang X, Chen W, Zhang L, et al. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J Am Chem Soc 2017;139:9419-22.
27. Zhang L, Fischer JMTA, Jia Y, et al. Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J Am Chem Soc 2018;140:10757-63.
28. Chen Z, Zhang X, Liu W, et al. Amination strategy to boost the CO2 electroreduction current density of M–N/C single-atom catalysts to the industrial application level. Energy Environ Sci 2021;14:2349-56.
29. Guo W, Wang Z, Wang X, Wu Y. General design concept for single-atom catalysts toward heterogeneous catalysis. Adv Mater 2021;33:2004287.
30. Han X, Ling X, Wang Y, et al. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew Chem Int Ed Engl 2019;58:5359-64.
31. Zhao C, Dai X, Yao T, et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J Am Chem Soc 2017;139:8078-81.
32. Jiao L, Zhu J, Zhang Y, et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J Am Chem Soc 2021;143:19417-24.
33. Zhao Y, Zhou H, Chen W, et al. Two-step carbothermal welding to access atomically dispersed Pd1 on three-dimensional zirconia nanonet for direct indole synthesis. J Am Chem Soc 2019;141:10590-4.
34. Ma X, Liu H, Yang W, Mao G, Zheng L, Jiang HL. Modulating coordination environment of single-atom catalysts and their proximity to photosensitive units for boosting MOF photocatalysis. J Am Chem Soc 2021;143:12220-9.
35. Fang X, Shang Q, Wang Y, et al. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv Mater 2018;30:1705112.
36. Qiao B, Lin J, Wang A, Chen Y, Zhang T, Liu J. Highly active Au1/Co3O4 single-atom catalyst for CO oxidation at room temperature. Chinese J Catal 2015;36:1505-11.
37. Peng W, Luo M, Xu X, et al. Spontaneous atomic ruthenium doping in Mo2CTX MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Adv Energy Mater 2020;10:2001364.
38. Yang Y, Yang Q, Yang Y, et al. Enhancing water oxidation of Ru single atoms via oxygen-coordination bonding with NiFe layered double hydroxide. ACS Catal 2023;13:2771-9.
39. Xiang G, Zhao S, Wei C, et al. Atomically dispersed Au catalysts for preferential oxidation of CO in H2-rich stream. Appl Catal B Environ 2021;296:120385.
40. Hannagan RT, Giannakakis G, Flytzani-Stephanopoulos M, Sykes ECH. Single-atom alloy catalysis. Chem Rev 2020;120:12044-88.
41. Zhang T, Walsh AG, Yu J, Zhang P. Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities. Chem Soc Rev 2021;50:569-88.
42. Xu Z, Ao Z, Yang M, Wang S. Recent progress in single-atom alloys: synthesis, properties, and applications in environmental catalysis. J Hazard Mater 2022;424:127427.
43. Wang H, Jiao L, Zheng L, et al. PdBi single-atom alloy aerogels for efficient ethanol oxidation. Adv Funct Mater 2021;31:2103465.
44. Shen X, Liu X, Wang S, et al. Synergistic modulation at atomically dispersed Fe/Au interface for selective CO2 electroreduction. Nano Lett 2021;21:686-92.
45. Mao J, He CT, Pei J, et al. Isolated Ni atoms dispersed on Ru nanosheets: high-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett 2020;20:3442-8.
46. Wang Y, Cao L, Libretto NJ, et al. Ensemble effect in bimetallic electrocatalysts for CO2 reduction. J Am Chem Soc 2019;141:16635-42.
47. Chen C, Wu D, Li Z, et al. Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv Energy Mater 2019;9:1803913.
48. Jiao J, Lin R, Liu S, et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat Chem 2019;11:222-8.
49. Muravev V, Spezzati G, Su Y, et al. Interface dynamics of Pd–CeO2 single-atom catalysts during CO oxidation. Nat Catal 2021;4:469-78.
50. Zhang Z, Feng C, Liu C, et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat Commun 2020;11:1215.
51. Zhang J, Liu J, Xi L, et al. Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction. J Am Chem Soc 2018;140:3876-9.
52. Xu J, Li R, Xu C, et al. Underpotential-deposition synthesis and in-line electrochemical analysis of single-atom copper electrocatalysts. Appl Catal B Environ 2021;289:120028.
53. Zhang J, Zhao Y, Guo X, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat Catal 2018;1:985-92.
54. Jiang K, Liu B, Luo M, et al. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat Commun 2019;10:1743.
55. Zhang J, Pan Y, Feng D, et al. Mechanistic insight into the synergy between platinum single atom and cluster dual active sites boosting photocatalytic hydrogen evolution. Adv Mater 2023;35:e2300902.
56. Yang Z, Chen C, Zhao Y, et al. Pt single atoms on CrN nanoparticles deliver outstanding activity and CO tolerance in the hydrogen oxidation reaction. Adv Mater 2023;35:e2208799.
57. Li J, Banis MN, Ren Z, et al. Unveiling the nature of Pt single-atom catalyst during electrocatalytic hydrogen evolution and oxygen reduction reactions. Small 2021;17:2007245.
58. Song Z, Wang Q, Li J, et al. Single-atom surface anchoring strategy via atomic layer deposition to achieve dual catalysts with remarkable electrochemical performance. EcoMat 2023;5:e12351.
59. Zhang L, Wang Q, Li L, et al. Single atom surface engineering: a new strategy to boost electrochemical activities of Pt catalysts. Nano Energy 2022;93:106813.
60. Jiao S, Kong M, Hu Z, Zhou S, Xu X, Liu L. Pt atom on the wall of atomic layer deposition (ALD)-made MoS2 nanotubes for efficient hydrogen evolution. Small 2022;18:2105129.
61. Yan H, Lin Y, Wu H, et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat Commun 2017;8:1070.
62. Zafari M, Kumar D, Umer M, Kim KS. Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts. J Mater Chem A 2020;8:5209-16.
63. Wang Z, Wang C, Hu Y, et al. Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction. Nano Res 2021;14:2790-6.
64. Shang H, Zhou X, Dong J, et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat Commun 2020;11:3049.
65. Li X, Yang X, Liu L, et al. Chemical vapor deposition for N/S-doped single Fe site catalysts for the oxygen reduction in direct methanol fuel cells. ACS Catal 2021;11:7450-9.
66. Li Q, Chen W, Xiao H, et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv Mater 2018;30:e1800588.
67. Zhang G, Tang F, Wang X, Wang L, Liu Y. Atomically dispersed Co–S–N active sites anchored on hierarchically porous carbon for efficient catalytic hydrogenation of nitro compounds. ACS Catal 2022;12:5786-94.
68. Wang M, Yang W, Li X, et al. Atomically dispersed Fe–heteroatom (N, S) bridge sites anchored on carbon nanosheets for promoting oxygen reduction reaction. ACS Energy Lett 2021;6:379-86.
69. Zhang H, Liu Y, Chen T, Zhang J, Zhang J, Lou XWD. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix. Adv Mater 2019;31:1904548.
70. Jiang R, Li L, Sheng T, Hu G, Chen Y, Wang L. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J Am Chem Soc 2018;140:11594-8.
71. Cai Y, Fu J, Zhou Y, et al. Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat Commun 2021;12:586.
72. Wang F, Zhang R, Zhang Y, et al. Modulating electronic structure of atomically dispersed nickel sites through boron and nitrogen dual coordination boosts oxygen reduction. Adv Funct Mater 2023;33:2213863.
73. Jiao D, Liu Y, Cai Q, Zhao J. Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: a computational study. J Mater Chem A 2021;9:1240-51.
74. Liu W, Zhang L, Liu X, et al. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond. J Am Chem Soc 2017;139:10790-8.
75. Zhang Y, Jiao L, Yang W, Xie C, Jiang HL. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew Chem Int Ed Engl 2021;60:7607-11.
76. Wang J, Qiu W, Li G, et al. Coordinatively deficient single-atom Fe-N-C electrocatalyst with optimized electronic structure for high-performance lithium-sulfur batteries. Energy Storage Mater 2022;46:269-77.
77. Zhang S, Ao X, Huang J, et al. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett 2021;21:9691-8.
78. Fan B, Wang H, Han X, Deng Y, Hu W. Single atoms (Pt, Ir and Rh) anchored on activated NiCo LDH for alkaline hydrogen evolution reaction. Chem Commun 2022;58:8254-7.
79. Li X, Shen P, Luo Y, et al. PdFe single-atom alloy metallene for N2 electroreduction. Angew Chem Int Ed Engl 2022;61:e202205923.
80. Pan J, Zhang G, Guan Z, et al. Anchoring Ni single atoms on sulfur-vacancy-enriched ZnIn2S4 nanosheets for boosting photocatalytic hydrogen evolution. J Energy Chem 2021;58:408-14.
81. Han Z, Zhao S, Xiao J, et al. Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries. Adv Mater 2021;33:2105947.
82. Han B, Guo Y, Huang Y, et al. Strong metal-support interactions between Pt single atoms and TiO2. Angew Chem Int Ed Engl 2020;59:11824-9.
83. Hu B, Sun K, Zhuang Z, et al. Distinct crystal-facet-dependent behaviors for single-atom palladium-on-ceria catalysts: enhanced stabilization and catalytic properties. Adv Mater 2022;34:2107721.
84. Shi Y, Ma ZR, Xiao YY, et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat Commun 2021;12:3021.
85. Qu Y, Wang L, Li Z, et al. ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv Mater 2019;31:1904496.
86. Hu X, Luo G, Zhao Q, et al. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries. J Am Chem Soc 2020;142:16776-86.
87. Liu L, Wang N, Zhu C, et al. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5. Angew Chem Int Ed Engl 2020;59:819-25.
88. Chen S, Li WH, Jiang W, et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew Chem Int Ed Engl 2022;61:e202114450.
89. Liu G, Huang Y, Lv H, et al. Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion. Appl Catal B Environ 2021;284:119683.
90. Su L, Wang P, Ma X, Wang J, Zhan S. Regulating local electron density of iron single sites by introducing nitrogen vacancies for efficient photo-fenton process. Angew Chem Int Ed Engl 2021;60:21261-6.
91. Kumar A, Liu X, Lee J, et al. Discovering ultrahigh loading of single-metal-atoms via surface tensile-strain for unprecedented urea electrolysis. Energy Environ Sci 2021;14:6494-505.
92. Chen W, Pei J, He CT, et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew Chem Int Ed Engl 2017;56:16086-90.
93. Shah K, Dai R, Mateen M, et al. Cobalt single atom incorporated in ruthenium oxide sphere: a robust bifunctional electrocatalyst for HER and OER. Angew Chem Int Ed Engl 2022;61:e202114951.
94. Yang Y, Qian Y, Li H, et al. O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci Adv 2020;6:eaba6586.
95. Cai C, Wang M, Han S, et al. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets. ACS Catal 2021;11:123-30.
96. Wang Q, Huang X, Zhao ZL, et al. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J Am Chem Soc 2020;142:7425-33.
97. Zhou X, Gao J, Hu Y, et al. Theoretically revealed and experimentally demonstrated synergistic electronic interaction of CoFe dual-metal sites on N-doped carbon for boosting both oxygen reduction and evolution reactions. Nano Lett 2022;22:3392-9.
98. Wang Z, Jin X, Zhu C, et al. Atomically dispersed Co2-N6 and Fe-N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv Mater 2021;33:2104718.
99. Zhang Z, Sun J, Wang F, Dai L. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew Chem Int Ed Engl 2018;57:9038-43.
100. Bai X, Zhao Z, Lu G. Breaking the scaling relationship on single-atom embedded MBene for selective CO2 electroreduction. J Phys Chem Lett 2023;14:5172-80.
101. Xiao J, Liu Z, Wang X, Li F, Zhao Z. Homonuclear multi-atom catalysts for CO2 electroreduction: a comparison density functional theory study with their single-atom counterparts. J Mater Chem A 2023;11:25662-70.
102. Chen Z, Chen LX, Yang CC, Jiang Q. Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges. J Mater Chem A 2019;7:3492-515.
103. Zhao D, Zhuang Z, Cao X, et al. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem Soc Rev 2020;49:2215-64.
104. Yang Y, Yang Y, Pei Z, et al. Recent progress of carbon-supported single-atom catalysts for energy conversion and storage. Matter 2020;3:1442-76.
105. Li P, Jin Z, Fang Z, Yu G. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ Sci 2021;14:3522-31.
106. Lv X, Wei W, Li F, Huang B, Dai Y. Metal-free B@g-CN: visible/infrared light-driven single atom photocatalyst enables spontaneous dinitrogen reduction to ammonia. Nano Lett 2019;19:6391-9.
107. Chen Y, Zhang X, Qin J, Liu R. High-throughput screening of single metal atom anchored on N-doped boron phosphide for N2 reduction. Nanoscale 2021;13:13437-50.
108. Choi C, Back S, Kim NY, Lim J, Kim YH, Jung Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline. ACS Catal 2018;8:7517-25.
109. Zhao J, Chen Z. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. J Am Chem Soc 2017;139:12480-7.
110. Liu H, Han S, Zhao Y, et al. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. J Mater Chem A 2018;6:3211-7.
111. Shi MM, Bao D, Wulan BR, et al. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv Mater 2017;29:1606550.
112. Tao H, Choi C, Ding L, et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019;5:204-14.
113. Chen K, Ma Z, Li X, Kang J, Ma D, Chu K. Single-atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia. Adv Funct Mater 2023;33:2209890.
114. Wang X, Wang W, Qiao M, et al. Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Sci Bull 2018;63:1246-53.
115. Sun H, Yin H, Shi W, et al. Porous β-FeOOH nanotube stabilizing Au single atom for high-efficiency nitrogen fixation. Nano Res 2022;15:3026-33.
116. Geng Z, Liu Y, Kong X, et al. Achieving a record-high yield rate of 120.9 μgNH3 mgcat.-1 h-1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv Mater 2018;30:1803498.
117. He T, Puente Santiago AR, Du A. Atomically embedded asymmetrical dual-metal dimers on N-doped graphene for ultra-efficient nitrogen reduction reaction. J Catal 2020;388:77-83.
118. Han L, Ren Z, Ou P, et al. Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew Chem Int Ed Engl 2021;60:345-50.
119. Shang S, Xiong W, Yang C, et al. Atomically dispersed iron metal site in a porphyrin-based metal-organic framework for photocatalytic nitrogen fixation. ACS Nano 2021;15:9670-8.
120. Li Y, Li J, Huang J, et al. Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angew Chem Int Ed Engl 2021;60:9078-85.
121. Hu R, Yu Y, Li Y, et al. Rational design of bimetallic atoms supported on C3N monolayer to break the linear relations for efficient electrochemical nitrogen reduction. Nano Res 2022;15:8656-64.
122. Li XF, Li QK, Cheng J, et al. Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J Am Chem Soc 2016;138:8706-9.
123. Zhang R, Jiao L, Yang W, Wan G, Jiang H. Single-atom catalysts templated by metal–organic frameworks for electrochemical nitrogen reduction. J Mater Chem A 2019;7:26371-7.
124. Liu K, Fu J, Zhu L, et al. Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale 2020;12:4903-8.
125. Lü F, Zhao S, Guo R, et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 2019;61:420-7.
126. Wang M, Liu S, Qian T, et al. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat Commun 2019;10:341.
127. Zhang S, Jin M, Shi T, et al. Electrocatalytically active Fe-(O-C2)4 single-atom sites for efficient reduction of nitrogen to ammonia. Angew Chem Int Ed Engl 2020;59:13423-9.
128. Zhang L, Zhao W, Zhang W, Chen J, Hu Z. gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction. Nano Res 2019;12:1181-6.
129. Lin L, Wei F, Jiang R, Huang Y, Lin S. The role of central heteroatom in electrochemical nitrogen reduction catalyzed by polyoxometalate-supported single-atom catalyst. Nano Res 2023;16:309-17.
130. Sahoo SK, Heske J, Antonietti M, Qin Q, Oschatz M, Kühne TD. Electrochemical N2 reduction to ammonia using single Au/Fe atoms supported on nitrogen-doped porous carbon. ACS Appl Energy Mater 2020;3:10061-9.
131. Li J, Chen S, Quan F, et al. Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions. Chem 2020;6:885-901.
132. Su H, Chen L, Chen Y, et al. Single atoms of iron on MoS2 nanosheets for N2 electroreduction into ammonia. Angew Chem Int Ed Engl 2020;59:20411-6.
133. Ling C, Bai X, Ouyang Y, Du A, Wang J. Single molybdenum atom anchored on N-doped carbon as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions. J Phys Chem C 2018;122:16842-7.
134. Han L, Liu X, Chen J, et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew Chem Int Ed Engl 2019;58:2321-5.
135. Fan B, Wang H, Zhang H, et al. Phase transfer of Mo2C induced by boron doping to boost nitrogen reduction reaction catalytic activity. Adv Funct Mater 2022;32:2110783.
136. Song Y, Wang H, Song Z, et al. Ni-doped Mo2C anchored on graphitized porous carbon for boosting electrocatalytic N2 reduction. ACS Appl Mater Interfaces 2022;14:17273-81.
137. Ma Y, Yang T, Zou H, et al. Synergizing Mo single atoms and Mo2C nanoparticles on CNTs synchronizes selectivity and activity of electrocatalytic N2 reduction to ammonia. Adv Mater 2020;32:2002177.
138. Wang J, Zhang Z, Qi S, et al. Photo-assisted high performance single atom electrocatalysis of the N2 reduction reaction by a Mo-embedded covalent organic framework. J Mater Chem A 2021;9:19949-57.
139. Chen L, He C, Wang R, et al. Potential active sites of Mo single atoms for electrocatalytic reduction of N2. Chinese Chem Lett 2021;32:53-6.
140. Shi L, Bi S, Qi Y, et al. Anchoring Mo single-atom sites on B/N codoped porous carbon nanotubes for electrochemical reduction of N2 to NH3. ACS Catal 2022;12:7655-63.
141. Zhang C, Wang Z, Lei J, Ma L, Yakobson BI, Tour JM. Atomic molybdenum for synthesis of ammonia with 50% Faradic efficiency. Small 2022;18:e2106327.
142. Mukherjee S, Yang X, Shan W, et al. Atomically dispersed single Ni site catalysts for nitrogen reduction toward electrochemical ammonia synthesis using N2 and H2O. Small Methods 2020;4:1900821.
143. Han L, Hou M, Ou P, et al. Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal 2021;11:509-16.
144. Zang W, Yang T, Zou H, et al. Copper single atoms anchored in porous nitrogen-doped carbon as efficient pH-universal catalysts for the nitrogen reduction reaction. ACS Catal 2019;9:10166-73.
145. Zhang W, Fu Y, Peng Q, et al. Supramolecular preorganization effect to access single cobalt sites for enhanced photocatalytic hydrogen evolution and nitrogen fixation. Chem Eng J 2020;394:124822.
146. Liu J, Kong X, Zheng L, Guo X, Liu X, Shui J. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction. ACS Nano 2020;14:1093-101.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.