REFERENCES

1. Muralt P. Ferroelectric thin films for micro-sensors and actuators: a review. J Micromech Microeng 2000;10:136.

2. Setter N, Damjanovic D, Eng L, et al. Ferroelectric thin films: review of materials, properties, and applications. J Appl Phys 2006;100:051606.

3. Scott JF. Applications of modern ferroelectrics. Science 2007;315:954-9.

4. Hoffman J, Pan X, Reiner JW, et al. Ferroelectric field effect transistors for memory applications. Adv Mater 2010;22:2957-61.

5. Martin LW, Rappe AM. Thin-film ferroelectric materials and their applications. Nat Rev Mater 2016;2:16087.

6. Pertsev NA, Zembilgotov AG, Tagantsev AK. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys Rev Lett 1998;80:1988.

7. Li YL, Hu SY, Liu ZK, Chen LQ. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater 2002;50:395-411.

8. Schlom DG, Chen LQ, Eom CB, Rabe KM, Streiffer SK, Triscone JM. Strain tuning of ferroelectric thin films. Annu Rev Mater Res 2007;37:589-626.

9. Damodaran AR, Agar JC, Pandya S, et al. New modalities of strain-control of ferroelectric thin films. J Phys Condens Matter 2016;28:263001.

10. Damodaran AR, Pandya S, Agar JC, et al. Three-state ferroelastic switching and large electromechanical responses in PbTiO3 thin films. Adv Mater 2017;29:1702069.

11. Sheng G, Hu JM, Zhang JX, Li YL, Liu ZK, Chen LQ. Phase-field simulations of thickness-dependent domain stability in PbTiO3 thin films. Acta Mater 2012;60:3296-301.

12. Nesterov O, Matzen S, Magen C, Vlooswijk AHG, Catalan G, Noheda B. Thickness scaling of ferroelastic domains in PbTiO3 films on DyScO3. Appl Phys Lett 2013;103:142901.

13. Li S, Zhu YL, Tang YL, et al. Thickness-dependent a1/a2 domain evolution in ferroelectric PbTiO3 films. Acta Mater 2017;131:123-30.

14. Nelson CT, Winchester B, Zhang Y, et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett 2011;11:828-34.

15. Wang YJ, Feng YP, Zhu YL, et al. Polar meron lattice in strained oxide ferroelectrics. Nat Mater 2020;19:881-6.

16. Tagantsev AK, Pertsev NA, Muralt P, Setter N. Strain-induced diffuse dielectric anomaly and critical point in perovskite ferroelectric thin films. Phys Rev B 2001;65:012104.

17. Simon WK, Akdogan EK, Safari A, Bellotti JA. In-plane microwave dielectric properties of paraelectric barium strontium titanate thin films with anisotropic epitaxy. Appl Phys Lett 2005;87:082906.

18. Ouyang J, Slusker J, Levin I, et al. Engineering of self-assembled domain architectures with ultra-high piezoelectric response in epitaxial ferroelectric films. Adv Funct Mater 2007;17:2094-100.

19. Cao Y, Sheng G, Zhang JX, et al. Piezoelectric response of single-crystal PbZr1-xTixO3 near morphotropic phase boundary predicted by phase-field simulation. Appl Phys Lett 2010;97:252904.

20. Xu R, Karthik J, Damodaran AR, Martin LW. Stationary domain wall contribution to enhanced ferroelectric susceptibility. Nat Commun 2014;5:3120.

21. Gui Z, Prosandeev S, Bellaiche L. Properties of epitaxial (110) BaTiO3 films from first principles. Phys Rev B 2011;84:214112.

22. Xu R, Zhang J, Chen Z, Martin LW. Orientation-dependent structural phase diagrams and dielectric properties of PbZr1-xTixO3 polydomain thin films. Phys Rev B 2015;91:144106.

23. Lee JH, Chu K, Kim KE, Seidel J, Yang CH. Out-of-plane three-stable-state ferroelectric switching: finding the missing middle states. Phys Rev B 2016;93:115142.

24. Feng YP, Jiang RJ, Zhu YL, et al. Strain coupling of ferroelastic domains and misfit dislocations in [101]-oriented ferroelectric PbTiO3 films. RSC Adv 2022;12:20423-31.

25. Xu R, Gao R, Reyes-Lillo SE, et al. Reducing coercive-field scaling in ferroelectric thin films via orientation control. ACS Nano 2018;12:4736-43.

26. Feng YP, Tang YL, Zhu YL, Zou MJ, Wang YJ, Ma XL. Thickness-dependent evolution of piezoresponses and a/c domains in -oriented PbTiO3 ferroelectric films. J Appl Phys 2020;128:224102.

27. Cohen RE. Origin of ferroelectricity in perovskite oxides. Nature 1992;358:136-8.

28. Jung WW, Lee HC, Ahn WS, Ahn SH, Choi SK. Switchable single c-domain formation in a heteroepitaxial PbTiO3 thin film on a (001) Nb-SrTiO3 substrate fabricated by means of hydrothermal epitaxy. Appl Phys Lett 2005;86:252901.

29. Mtebwa M, Tagantsev AK, Yamada T, Gemeiner P, Dkhil B, Setter N. Single-domain (110) PbTiO3 thin films: thermodynamic theory and experiments. Phys Rev B 2016;93:144113.

30. Zhang H, Feng YP, Wang YJ, Tang Y, Zhu Y, Ma X. Strain phase diagram and physical properties of (110)-oriented PbTiO3 thin films by phase-field simulations. Acta Mater 2022;228:117761.

31. Akcay G, Misirlioglu IB, Alpay SP. Dielectric tunability of (110) oriented barium strontium titanate epitaxial films on (100) orthorhombic substrates. Appl Phys Lett 2006;89:042903.

32. Ma W, Wang F. Effect of in-plane strain anisotropy on (011) epitaxial BaTiO3 and PbTiO3 thin films. AIP Adv 2017;7:105120.

33. Guo XW, Wang YJ, Zhang H, Tang YL, Zhu YL, Ma XL. Misfit strain-temperature phase diagram of multi-domain structures in (111)-oriented ferroelectric PbTiO3 films. Acta Mater 2020;196:539-48.

34. Guo XW, Zou MJ, Wang YJ, Tang Y, Zhu YL, Ma X. Effects of anisotropic misfit strains on equilibrium phases and domain structures in (111)-oriented ferroelectric PbTiO3 films. Acta Mater 2021;206:116639.

35. Chen LQ. Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J Am Ceram Soc 2008;91:1835-44.

36. Sheng G, Zhang JX, Li YL, et al. Domain stability of PbTiO3 thin films under anisotropic misfit strains: Phase-field simulations. J Appl Phys 2008;104:054105.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/