REFERENCES
1. Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824-32.
2. Sebastian, A.; Le Gallo, M.; Khaddam-Aljameh, R.; Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 2020, 15, 529-44.
3. Lanza, M.; Pazos, S.; Aguirre, F.; et al. The growing memristor industry. Nature 2025, 640, 613-22.
4. Kim, H. J.; Julian, M.; Williams, C.; et al. Versatile spaceborne photonics with chalcogenide phase-change materials. NPJ. Microgravity. 2024, 10, 20.
5. Liu, B.; Li, K.; Zhou, J.; Sun, Z. Reversible crystalline-crystalline transitions in chalcogenide phase-change materials. Adv. Funct. Mater. 2024, 34, 2407239.
6. Li, X. D.; Chen, N. K.; Wang, B. Q.; et al. Resistive memory devices at the thinnest limit: progress and challenges. Adv. Mater. 2024, 36, e2307951.
7. Wang, Z.; Wu, H.; Burr, G. W.; et al. Resistive switching materials for information processing. Nat. Rev. Mater. 2020, 5, 173-95.
8. Wuttig, M.; Bhaskaran, H.; Taubner, T. Phase-change materials for non-volatile photonic applications. Nature. Photon. 2017, 11, 465-76.
9. Sebastian, A.; Le Gallo, M.; Burr, G. W.; Kim, S.; Brightsky, M.; Eleftheriou, E. Tutorial: Brain-inspired computing using phase-change memory devices. J. Appl. Phys. 2018, 124, 111101.
10. Youngblood, N.; Ríos Ocampo, C. A.; Pernice, W. H. P.; Bhaskaran, H. Integrated optical memristors. Nat. Photon. 2023, 17, 561-72.
11. Zeni, C.; Pinsler, R.; Zügner, D.; et al. A generative model for inorganic materials design. Nature 2025, 639, 624-32.
12. Merchant, A.; Batzner, S.; Schoenholz, S. S.; Aykol, M.; Cheon, G.; Cubuk, E. D. Scaling deep learning for materials discovery. Nature 2023, 624, 80-5.
13. Yuan, J.; Li, Z.; Yang, Y.; et al. Applications of machine learning method in high-performance materials design: a review. J. Mater. Inf. 2024, 4, 14.
14. Xu, D.; Zhang, Q.; Huo, X.; Wang, Y.; Yang, M. Advances in data-assisted high-throughput computations for material design. MGE. Advances. 2023, 1, e11.
15. Xu, M.; Xu, M.; Miao, X. Deep machine learning unravels the structural origin of mid-gap states in chalcogenide glass for high-density memory integration. InfoMat 2022, 4, e12315.
16. Schön, C. F.; van Bergerem, S.; Mattes, C.; et al. Classification of properties and their relation to chemical bonding: essential steps toward the inverse design of functional materials. Sci. Adv. 2022, 8, eade0828.
17. Kusne, A. G.; Yu, H.; Wu, C.; et al. On-the-fly closed-loop materials discovery via Bayesian active learning. Nat. Commun. 2020, 11, 5966.
18. Yuan, H.; Lu, J.; Zhuang, G.; Wang, H.; Hui, J. High-throughput screening of superlattice-like Ge-Sb-M (M = Sn, Se) thin films for multi-level phase change photonics materials. Microstructures 2025, 5, 2025053.
19. Liu, Y.; Li, X.; Zheng, H.; et al. High-throughput screening for phase-change memory materials. Adv. Funct. Mater. 2021, 31, 2009803.
20. Sun, S.; Wang, X.; Jiang, Y.; et al. High-throughput screening to identify two-dimensional layered phase-change chalcogenides for embedded memory applications. npj. Comput. Mater. 2024, 10, 1387.
21. Clima, S.; Matsubayashi, D.; Ravsher, T.; et al. In silico screening for As/Se-free ovonic threshold switching materials. npj. Comput. Mater. 2023, 9, 1043.
22. Abou El Kheir, O.; Bernasconi, M. High-throughput calculations on the decomposition reactions of off-stoichiometry GeSbTe alloys for embedded memories. Nanomaterials 2021, 11, 2382.
23. Sosso, G. C.; Miceli, G.; Caravati, S.; Behler, J.; Bernasconi, M. Neural network interatomic potential for the phase change material GeTe. Phys. Rev. B. 2012, 85, 174103.
24. Wang, G.; Sun, Y.; Zhou, J.; Sun, Z. PotentialMind: graph convolutional machine learning potential for Sb–Te binary compounds of multiple stoichiometries. J. Phys. Chem. C. 2023, 127, 24724-33.
25. Mocanu, F. C.; Konstantinou, K.; Lee, T. H.; et al. Modeling the phase-change memory material, Ge2Sb2Te5, with a machine-learned interatomic potential. J. Phys. Chem. B. 2018, 122, 8998-9006.
26. Sosso, G. C.; Miceli, G.; Caravati, S.; Giberti, F.; Behler, J.; Bernasconi, M. Fast crystallization of the phase change compound GeTe by large-scale molecular dynamics simulations. J. Phys. Chem. Lett. 2013, 4, 4241-6.
27. Dragoni, D.; Behler, J.; Bernasconi, M. Mechanism of amorphous phase stabilization in ultrathin films of monoatomic phase change material. Nanoscale 2021, 13, 16146-55.
28. Bosoni, E.; Campi, D.; Donadio, D.; Sosso, G. C.; Behler, J.; Bernasconi, M. Atomistic simulations of thermal conductivity in GeTe nanowires. J. Phys. D. Appl. Phys. 2020, 53, 054001.
29. Abou El Kheir, O.; Bonati, L.; Parrinello, M.; Bernasconi, M. Unraveling the crystallization kinetics of the Ge2Sb2Te5 phase change compound with a machine-learned interatomic potential. npj. Comput. Mater. 2024, 10, 1217.
30. Mo, P.; Zhang, Y.; Zhao, Z.; et al. High-speed and low-power molecular dynamics processing unit (MDPU) with ab initio accuracy. npj. Comput. Mater. 2024, 10, 1422.
31. Chen, Y.; Campi, D.; Bernasconi, M.; Mazzarello, R. Atomistic study of the configurational entropy and the fragility of supercooled liquid GeTe. Adv. Funct. Mater. 2024, 34, 2314264.
32. Yu, W.; Zhang, Z.; Wan, X.; et al. High-accuracy machine-learned interatomic potentials for the phase change material Ge3Sb6Te5. Chem. Mater. 2023, 35, 6651-8.
33. Ortner, T.; Petschenig, H.; Vasilopoulos, A.; et al. Rapid learning with phase-change memory-based in-memory computing through learning-to-learn. Nat. Commun. 2025, 16, 1243.
34. Li, H.; Xu, Y.; Duan, W. Ab initio artificial intelligence: future research of Materials Genome Initiative. MGE. Advances. 2023, 1, e16.
35. Syed, G. S.; Le Gallo, M.; Sebastian, A. Phase-change memory for in-memory computing. Chem. Rev. 2025, 125, 5163-94.
36. Sun, Z.; Zhou, J.; Ahuja, R. Structure of phase change materials for data storage. Phys. Rev. Lett. 2006, 96, 055507.
37. Wuttig, M.; Lüsebrink, D.; Wamwangi, D.; Wełnic, W.; Gillessen, M.; Dronskowski, R. The role of vacancies and local distortions in the design of new phase-change materials. Nat. Mater. 2007, 6, 122-8.
38. Caravati, S.; Bernasconi, M.; Kühne, T. D.; Krack, M.; Parrinello, M. Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials. Appl. Phys. Lett. 2007, 91, 171906.
39. Akola, J.; Jones, R. O. Structural phase transitions on the nanoscale: the crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe. Phys. Rev. B. 2007, 76, 235201.
40. Wełnic, W.; Botti, S.; Reining, L.; Wuttig, M. Origin of the optical contrast in phase-change materials. Phys. Rev. Lett. 2007, 98, 236403.
41. Gan, Y.; Zhou, J.; Sun, Z. Prediction of the atomic structure and thermoelectric performance for semiconducting Ge1Sb6Te10 from DFT calculations. J. Mater. Inf. 2021, 1, 2.
42. Hempelmann, J.; Müller, P. C.; Ertural, C.; Dronskowski, R. The orbital origins of chemical bonding in Ge-Sb-Te phase-change materials. Angew. Chem. Int. Ed. Engl. 2022, 61, e202115778.
43. Song, Z.; Cai, D.; Cheng, Y.; et al. 12-state multi-level cell storage implemented in a 128 Mb phase change memory chip. Nanoscale 2021, 13, 10455-61.
44. Redaelli, A.; Petroni, E.; Annunziata, R. Material and process engineering challenges in Ge-rich GST for embedded PCM. Mater. Sci. Semicond. Process. 2022, 137, 106184.
45. Deringer, V. L.; Caro, M. A.; Csányi, G. Machine learning interatomic potentials as emerging tools for materials science. Adv. Mater. 2019, 31, e1902765.
46. Zhou, Y.; Zhang, W.; Ma, E.; Deringer, V. L. Device-scale atomistic modelling of phase-change memory materials. Nat. Electron. 2023, 6, 746-54.
47. Abou El Kheir, O.; Bernasconi, M. Million-atom simulation of the set process in phase change memories at the real device scale. Adv. Elect. Mater. 2025, e2500110.
48. Dunton, O. R.; Arbaugh, T.; Starr, F. W. Computationally efficient machine-learned model for GST phase change materials via direct and indirect learning. J. Chem. Phys. 2025, 162, 034501.
49. Wang, G.; Wang, C.; Zhang, X.; Li, Z.; Zhou, J.; Sun, Z. Machine learning interatomic potential: bridge the gap between small-scale models and realistic device-scale simulations. iScience 2024, 27, 109673.
50. Wang, X.; Zhou, W.; Zhang, H.; et al. Multiscale simulations of growth-dominated Sb2Te phase-change material for non-volatile photonic applications. npj. Comput. Mater. 2023, 9, 1098.
51. Wuttig, M.; Deringer, V. L.; Gonze, X.; Bichara, C.; Raty, J. Y. Incipient metals: functional materials with a unique bonding mechanism. Adv. Mater. 2018, 30, e1803777.
52. Raty, J. Y.; Schumacher, M.; Golub, P.; Deringer, V. L.; Gatti, C.; Wuttig, M. A quantum-mechanical map for bonding and properties in solids. Adv. Mater. 2019, 31, e1806280.
53. Zhang, Q.; Zhang, Y.; Li, J.; Soref, R.; Gu, T.; Hu, J. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. Opt. Lett. 2018, 43, 94-7.
54. Zhang, Y.; Chou, J. B.; Li, J.; et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun. 2019, 10, 4279.
55. Zhang, Y.; Zhang, Q.; Ríos, C.; et al. Transient tap couplers for wafer-level photonic testing based on optical phase change materials. ACS. Photonics. 2021, 8, 1903-8.
56. Zhang, Y.; Fowler, C.; Liang, J.; et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol. 2021, 16, 661-6.
57. Wei, M.; Xu, K.; Tang, B.; et al. Monolithic back-end-of-line integration of phase change materials into foundry-manufactured silicon photonics. Nat. Commun. 2024, 15, 2786.
58. Siegrist, T.; Jost, P.; Volker, H.; et al. Disorder-induced localization in crystalline phase-change materials. Nat. Mater. 2011, 10, 202-8.
59. Yamada, N.; Matsunaga, T. Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory. J. Appl. Phys. 2000, 88, 7020-8.
60. Park, J.; Park, G.; Baik, H.; Lee, J.; Jeong, H.; Kim, K. Phase-change behavior of stoichiometric Ge2Sb2Te5 in phase-change random access memory. J. Electrochem. Soc. 2007, 154, H139.
61. Zhang, B.; Zhang, W.; Shen, Z.; et al. Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material. Appl. Phys. Lett. 2016, 108, 191902.
62. Zhang, H.; Wang, X.; Zhang, W. First-principles investigation of amorphous Ge-Sb-Se-Te optical phase-change materials. Opt. Mater. Express. 2022, 12, 2497.
63. Hutter, J.; Iannuzzi, M.; Schiffmann, F.; Vandevondele, J. cp2k: atomistic simulations of condensed matter systems. WIREs. Comput. Mol. Sci. 2014, 4, 15-25.
64. Kresse, G. Ab initio molecular dynamics for liquid metals. J. Non. Cryst. Solids. 1995, 192-3, 222-9.
65. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999, 59, 1758-75.
66. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-8.
67. IncAnsys. Lumerical FDTD solutions. https://www.ansys.com/products/optics/fdtd. (accessed 13 Aug 2025).
68. Hase, M.; Fons, P.; Mitrofanov, K.; Kolobov, A. V.; Tominaga, J. Femtosecond structural transformation of phase-change materials far from equilibrium monitored by coherent phonons. Nat. Commun. 2015, 6, 8367.
69. Wu, D.; Yang, X.; Wang, N.; et al. Resonant multilevel optical switching with phase change material GST. Nanophotonics 2022, 11, 3437-46.
70. Meng, J.; Gui, Y.; Nouri, B. M.; et al. Electrical programmable multilevel nonvolatile photonic random-access memory. Light. Sci. Appl. 2023, 12, 189.
71. Kooi, B. J.; De, Hosson. J. T. M. Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of GexSb2Te3+x (x = 1,2,3) phase change material. J. Appl. Phys. 2002, 92, 3584-90.
72. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207-15.
73. Koch, C.; Hansen, A.; Dankwort, T.; et al. Enhanced temperature stability and exceptionally high electrical contrast of selenium substituted Ge2Sb2Te5 phase change materials. RSC. Adv. 2017, 7, 17164-72.
74. Caravati, S.; Bernasconi, M.; Parrinello, M. First principles study of the optical contrast in phase change materials. J. Phys. Condens. Matter. 2010, 22, 315801.
75. Wełnic, W.; Wuttig, M.; Botti, S.; Reining, L. Local atomic order and optical properties in amorphous and laser-crystallized GeTe. C. R. Phys. 2009, 10, 514-27.
76. Xu, M.; Gu, R.; Qiao, C.; et al. Unraveling the structural and bonding nature of antimony sesquichalcogenide glass for electronic and photonic applications. J. Mater. Chem. C. 2021, 9, 8057-65.
77. Huang, B.; Robertson, J. Bonding origin of optical contrast in phase-change memory materials. Phys. Rev. B. 2010, 81, 081204.
78. Feldmann, J.; Youngblood, N.; Karpov, M.; et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 2021, 589, 52-8.
79. Feldmann, J.; Youngblood, N.; Wright, C. D.; Bhaskaran, H.; Pernice, W. H. P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 2019, 569, 208-14.
80. Shastri, B. J.; Tait, A. N.; Ferreira de Lima, T.; et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics. 2021, 15, 102-14.





