1. Zhao, Z. H.; Wang, H.; Li, J.; et al. Photocatalytic acetylene hydrochlorination by pairing proton reduction and chlorine oxidation over g-C3N4/BiOCl catalysts. J. Am. Chem. Soc. 2024, 146, 29441-9.
2. Zhang, L.; Bai, R.; Lin, J.; et al. Deprotonated 2-thiolimidazole serves as a metal-free electrocatalyst for selective acetylene hydrogenation. Nat. Chem. 2024, 16, 893-900.
3. An, S.; Zhao, Z. H.; Bu, J.; et al. Multi-functional formaldehyde-nitrate batteries for wastewater refining, electricity generation, and production of ammonia and formate. Angew. Chem. Int. Ed. Engl. 2024, 63, e202318989.
4. Bu, J.; Chang, S.; Li, J.; et al. Highly selective electrocatalytic alkynol semi-hydrogenation for continuous production of alkenols. Nat. Commun. 2023, 14, 1533.
5. Bu, J.; Liu, Z.; Ma, W.; et al. Selective electrocatalytic semihydrogenation of acetylene impurities for the production of polymer-grade ethylene. Nat. Catal. 2021, 4, 557-64.
6. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013, 135, 1167-76.
7. Chen, Y.; Kang, Y.; Zhao, Y.; et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J. Energy. Chem. 2021, 59, 83-99.
8. Xiao, J.; Shi, F.; Glossmann, T.; Burnett, C.; Liu, Z. From laboratory innovations to materials manufacturing for lithium-based batteries. Nat. Energy. 2023, 8, 329-39.
9. Yuan, K.; Tu, T.; Shen, C.; et al. Self-ball milling strategy to construct high-entropy oxide coated LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance. J. Adv. Ceram. 2022, 11, 882-92.
10. Ding, X.; Zhou, Q.; Li, X.; Xiong, X. Fast-charging anodes for lithium ion batteries: progress and challenges. Chem. Commun. 2024, 60, 2472-88.
11. Kou, P.; Zhang, Z.; Wang, Z.; et al. Opportunities and challenges of layered lithium-rich manganese-based cathode materials for high energy density lithium-ion batteries. Energy. Fuels. 2023, 37, 18243-65.
12. Miao, N.; Gong, Y.; Zhang, H.; et al. Discovery of two-dimensional hexagonal MBene HfBO and exploration on its potential for lithium-ion storage. Angew. Chem. Int. Ed. Engl. 2023, 62, e202308436.
13. Miao, N.; Yan, Y.; Wang, J. A rising layered boride family for energy and catalysis applications: novel hexagonal MAB phases and MBenes. ChemSusChem 2024, 17, e202400229.
14. Shen, Q.; He, Y.; Wang, J. Biomass-derived two-dimensional N,O-doped carbon with embedded binary-metal nanoparticles enables dendrite-free potassium-metal anodes. J. Mater. Chem. A. 2023, 11, 9829-39.
15. Wang, J.; Ye, T. N.; Gong, Y.; et al. Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB. Nat. Commun. 2019, 10, 2284.
16. Shen, Q.; Shi, Y.; He, Y.; Wang, J. Defect engineering of hexagonal MAB phase Ti2InB2 as anode of lithium-ion battery with excellent cycling stability. Adv. Sci. 2024, 11, e2308589.
17. Miao, N.; Wang, J.; Gong, Y.; et al. Computational prediction of boron-based MAX phases and MXene derivatives. Chem. Mater. 2020, 32, 6947-57.
18. Jang, I.; Go, W.; Song, B.; Park, H.; Kang, Y. C.; Chun, J. Improving ionic conductivity of von-Alpen-type NASICON ceramic electrolytes via magnesium doping. J. Adv. Ceram. 2023, 12, 1058-66.
19. Liu, M.; Wu, F.; Gong, Y.; et al. Interfacial-catalysis-enabled layered and inorganic-rich SEI on hard carbon anodes in ester electrolytes for sodium-ion batteries. Adv. Mater. 2023, 35, e2300002.
20. Kate, R. S.; Jadhav, H. S.; Chothe, U. P.; et al. Critical review of the recent progress and challenges of polyanion Na3V2(PO4)3 cathode materials in rechargeable sodium-ion batteries. J. Mater. Chem. A. 2024, 12, 7418-51.
21. Wang, L.; Tian, H.; Yao, X.; Cai, Y.; Gao, Z.; Su, Z. Research progress and modification measures of anode and cathode materials for sodium-ion batteries. ChemElectroChem 2024, 11, e202300414.
22. Eftekhari, A.; Jian, Z.; Ji, X. Potassium secondary batteries. ACS. Appl. Mater. Interfaces. 2017, 9, 4404-19.
23. Zhang, W.; Liu, Y.; Guo, Z. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 2019, 5, eaav7412.
24. Han, J.; Li, G. N.; Liu, F.; et al. Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries. Chem. Commun. 2017, 53, 1805-8.
25. Chihara, K.; Katogi, A.; Kubota, K.; Komaba, S. KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. Chem. Commun. 2017, 53, 5208-11.
26. Kim, H.; Seo, D. H.; Kim, J. C.; et al. Investigation of potassium storage in layered P3-type K0.5MnO2 cathode. Adv. Mater. 2017, 29.
27. Kim, H.; Kim, J. C.; Bo, S.; Shi, T.; Kwon, D.; Ceder, G. K-ion batteries based on a P2-type K0.6CoO2 cathode. Adv. Energy. Mater. 2017, 7, 1700098.
28. Yang, Z.; Li, W.; Zhang, G.; et al. Constructing Sb-O-C bond to improve the alloying reaction reversibility of free-standing Sb2Se3 nanorods for potassium-ion batteries. Nano. Energy. 2022, 93, 106764.
29. Li, W.; Yang, Z.; Zuo, J.; Wang, J.; Li, X. Emerging carbon-based flexible anodes for potassium-ion batteries: progress and opportunities. Front. Chem. 2022, 10, 1002540.
30. Kim, H.; Kim, J. C. Opportunities and challenges in cathode development for non-lithium-ion batteries. eScience 2024, 4, 100232.
31. Liu, X.; Chu, J.; Wang, Z.; et al. Design and optimization of carbon materials as anodes for advanced potassium-ion storage. Rare. Met. 2024, 43, 5516-48.
32. Jonderian, A.; Jia, S.; Yoon, G.; et al. Accelerated development of high voltage Li-ion cathodes. Adv. Energy. Mater. 2022, 12, 2201704.
33. Guo, X.; Wang, Z.; Yang, J.; Gong, X. Machine-learning assisted high-throughput discovery of solid-state electrolytes for Li-ion batteries. J. Mater. Chem. A. 2024, 12, 10124-36.
34. Xiao, R.; Li, H.; Chen, L. High-throughput computational discovery of K2CdO2 as an ion conductor for solid-state potassium-ion batteries. J. Mater. Chem. A. 2020, 8, 5157-62.
35. Wang, Y.; Liu, J.; Du, P.; Sun, Z.; Sun, Q. Screening topological quantum cathode materials for K-ion batteries by graph neural network and first-principles calculations. ACS. Appl. Energy. Mater. 2023, 6, 4503-10.
36. Toffoletti, L.; Kirchhain, H.; Landesfeind, J.; et al. Lithium ion mobility in lithium phosphidosilicates: crystal structure, 7Li, 29Si, and 31P MAS NMR spectroscopy, and impedance spectroscopy of Li8SiP4 and Li2SiP2. Chemistry 2016, 22, 17635-45.
37. Haffner, A.; Bräuniger, T.; Johrendt, D. Supertetrahedral networks and lithium-ion mobility in Li2SiP2 and LiSi2P3. Angew. Chem. Int. Ed. Engl. 2016, 55, 13585-8.
38. Haffner, A.; Hatz, A. K.; Moudrakovski, I.; Lotsch, B. V.; Johrendt, D. Fast sodium-ion conductivity in supertetrahedral phosphidosilicates. Angew. Chem. Int. Ed. Engl. 2018, 57, 6155-60.
39. Haffner, A.; Hatz, A. K.; Zeman, O. E. O.; Hoch, C.; Lotsch, B. V.; Johrendt, D. Polymorphism and fast potassium-ion conduction in the T5 supertetrahedral phosphidosilicate KSi2P3. Angew. Chem. Int. Ed. Engl. 2021, 60, 13641-6.
40. Zhang, Z.; Guo, J.; Sun, S.; et al. Optimized valence state of Co and Ni in high-entropy alloy for high active-stable OER. Rare. Met. 2023, 42, 3607-13.
41. Kabanov, A. A.; Morkhova, Y. A.; Bezuglov, I. A.; Blatov, V. A. 7.13 - Computational design of materials for metal-ion batteries. In: Comprehensive inorganic chemistry III. Elsevier; 2023. pp. 404-29.
42. Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth. Des. 2014, 14, 3576-86.
43. Anurova, N.; Blatov, V.; Ilyushin, G.; Blatova, O.; Ivanovschitz, A.; Demyanets, L. Migration maps of Li+ cations in oxygen-containing compounds. Solid. State. Ionics. 2008, 179, 2248-54.
44. Meutzner, F.; Münchgesang, W.; Kabanova, N. A.; et al. On the way to new possible Na-ion conductors: the voronoi-dirichlet approach, data mining and symmetry considerations in ternary Na oxides. Chemistry 2015, 21, 16601-8.
45. Morkhova, Y. A.; Rothenberger, M.; Leisegang, T.; Adams, S.; Blatov, V. A.; Kabanov, A. A. Computational search for novel Zn-ion conductors - a crystallochemical, bond valence, and density functional study. J. Phys. Chem. C. 2021, 125, 17590-9.
46. Slater, J. C. Atomic radii in crystals. J. Chem. Phys. 1964, 41, 3199-204.
47. Shannon, R. D.; Kabanova, N. A.; Fischer, R. X. Empirical electronic polarizabilities: deviations from the additivity rule. II. Structures exhibiting ion conductivity. Cryst. Res. Technol. 2019, 54, 1900037.
48. Chen, H.; Adams, S. Bond softness sensitive bond-valence parameters for crystal structure plausibility tests. IUCrJ 2017, 4, 614-25.
49. Chen, H.; Wong, L. L.; Adams, S. SoftBV - a software tool for screening the materials genome of inorganic fast ion conductors. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 2019, 75, 18-33.
50. Wong, L. L.; Phuah, K. C.; Dai, R.; Chen, H.; Chew, W. S.; Adams, S. Bond valence pathway analyzer - an automatic rapid screening tool for fast ion conductors within softBV. Chem. Mater. 2021, 33, 625-41.
51. He, B.; Mi, P.; Ye, A.; et al. A highly efficient and informative method to identify ion transport networks in fast ion conductors. Acta. Mater. 2021, 203, 116490.
52. Wong, L. L.; Chen, H.; Adams, S. Design of fast ion conducting cathode materials for grid-scale sodium-ion batteries. Phys. Chem. Chem. Phys. 2017, 19, 7506-23.
53. Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 2002, 1, 123-8.
54. Gu, W.; Ezbiri, M.; Prasada, R. R.; Avdeev, M.; Adams, S. Effects of penta- and trivalent dopants on structure and conductivity of Li7La3Zr2O12. Solid. State. Ionics. 2015, 274, 100-5.
55. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864-71.
56. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B. Condens. Matter. 1994, 50, 17953-79.
57. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. Condens. Matter. 1996, 54, 11169-86.
58. Wang, V.; Xu, N.; Liu, J.; Tang, G.; Geng, W. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.
59. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-8.
60. Lalroliana, B.; Lalmuanchhana; Lalhriatzuala. DFT + U study of electronic and optical properties of Cu3TMTe4: TM = V, Nb, Ta with incorporation of SOC. Mater. Today. Proc. 2023, In Press.
61. Toukmaji, A. Y.; Board, J. A. Ewald summation techniques in perspective: a survey. Comput. Phys. Commun. 1996, 95, 73-92.
62. Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978-85.
63. Tan, P.; Wei, Z.; Shyy, W.; Zhao, T. Prediction of the theoretical capacity of non-aqueous lithium-air batteries. Appl. Energy. 2013, 109, 275-82.
64. Toriyama, M. Y.; Kaufman, J. L.; Van der Ven, A. Potassium ordering and structural phase stability in layered KxCoO2. ACS. Appl. Energy. Mater. 2019, 2, 2629-36.
65. Herr, J. D.; Steele, R. P. Accelerating ab initio molecular dynamics simulations by linear prediction methods. Chem. Phys. Lett. 2016, 661, 42-7.
66. Kim, J. S.; Jung, W. D.; Choi, S.; et al. Thermally induced S-sublattice transition of Li3PS4 for fast lithium-ion conduction. J. Phys. Chem. Lett. 2018, 9, 5592-7.
67. Eremin, R.; Kabanova, N.; Morkhova, Y.; Golov, A.; Blatov, V. High-throughput search for potential potassium ion conductors: a combination of geometrical-topological and density functional theory approaches. Solid. State. Ionics. 2018, 326, 188-99.
68. Eisenmann, B.; Somer, M. On new ternary alkali metal phosphides: K2CuP, NaZnP and K4CdP2. Z. Naturforsch. B. 1985, 40, 1419-23.
69. Eisenmann, B.; Somer, M. Intermetallic compounds with HgCl2 isoelectronic anions: crystal structure and vibrational spectra of Na4HgP2, K4ZnP2, K4CdP2 and K4HgP2. Z. Naturforsch. B. 1989, 44, 1228-32.
70. Eisenmann, B.; Klein, J.; Somer, M. Linear anions [CuAs2]5-, [AuP2]5- and [AuAs2]5- in potassium compounds. J. Alloys. Compd. 1992, 178, 431-9.
71. Somer, M.; Hartweg, M.; Peters, K.; von Schnering, H. G. Crystal structure of tetrapotassium diphosphidoberyllate, K4BeP2. Zeitschrift. für. Kristallographie. 1990, 192, 263-4.
72. Savelsberg, G.; Schäfer, H. On the preparation and crystal structure of K3CU3P. Z. Naturforsch. B. 1978, 33, 590-2.
73. Eisenmann, B.; Klein, J.; Somer, M. Crystal structure of dipotassium catena-phosphidoaurate(I), K2AuP. Crystall. Mater. 1991, 197, 277-8.
74. Orikasa, Y.; Gogyo, Y.; Yamashige, H.; et al. Ionic conduction in lithium ion battery composite electrode governs cross-sectional reaction distribution. Sci. Rep. 2016, 6, 26382.
75. Blase, W.; Cordier, G.; Somer, M. Crystal structure of tripotassium catenadi-μ-phosphido-indate, K3InP2. Zeitschrift. für. Kristallographie. 1991, 195, 109-10.
76. Flores, E. M.; Moreira, M. L.; Piotrowski, M. J. Structural and electronic properties of bulk ZnX (X = O, S, Se, Te), ZnF2, and ZnO/ZnF2: a DFT investigation within PBE, PBE + U, and hybrid HSE functionals. J. Phys. Chem. A. 2020, 124, 3778-85.
77. Shevchenko, A. P.; Shabalin, A. A.; Karpukhin, I. Y.; Blatov, V. A. Topological representations of crystal structures: generation, analysis and implementation in the TopCryst system. Sci. Technol. Adv. Mater. Methods. 2022, 2, 250-65.
78. Ohse, L.; Somer, M.; Blase, W.; Cordier, G. Compounds with SiS2 isoelectronic anions ∞1[AlX4/23-] and ∞1[InP4/23-]: synthesis, crystal structures and vibrational spectra of Na3[AlX2], K2Na[AlX2] and K3[InP2] (X = P, As). Z. Naturforsch. B. 1993, 48, 1027-34.
79. Schurz, C. M.; Schleid, T. Chains of trans-edge connected [ZM4] tetrahedra (Z=N and O) in the lanthanide nitride chlorides M2NCl3 and Na2M4ONCl9 (M=La–Nd). J. Alloys. Compd. 2009, 485, 110-8.
80. Wu, W.; Sun, Q. Screening topological quantum materials for Na-ion battery cathode. ACS. Mater. Lett. 2022, 4, 175-80.
81. Hosaka, T.; Shimamura, T.; Kubota, K.; Komaba, S. Polyanionic compounds for potassium-ion batteries. Chem. Rec. 2019, 19, 735-45.
82. Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899-908.
83. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-4.
84. Ling, S.; Gao, J.; Xiao, R.; Chen, L. High-throughput theoretical design of lithium battery materials. Chin. Phys. B. 2016, 25, 018208.
85. Nishitani, Y.; Adams, S.; Ichikawa, K.; Tsujita, T. Evaluation of magnesium ion migration in inorganic oxides by the bond valence site energy method. Solid. State. Ionics. 2018, 315, 111-5.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.