REFERENCES

1. Zhao, Z. H.; Wang, H.; Li, J.; et al. Photocatalytic acetylene hydrochlorination by pairing proton reduction and chlorine oxidation over g-C3N4/BiOCl catalysts. J. Am. Chem. Soc. 2024, 146, 29441-9.

2. Zhang, L.; Bai, R.; Lin, J.; et al. Deprotonated 2-thiolimidazole serves as a metal-free electrocatalyst for selective acetylene hydrogenation. Nat. Chem. 2024, 16, 893-900.

3. An, S.; Zhao, Z. H.; Bu, J.; et al. Multi-functional formaldehyde-nitrate batteries for wastewater refining, electricity generation, and production of ammonia and formate. Angew. Chem. Int. Ed. Engl. 2024, 63, e202318989.

4. Bu, J.; Chang, S.; Li, J.; et al. Highly selective electrocatalytic alkynol semi-hydrogenation for continuous production of alkenols. Nat. Commun. 2023, 14, 1533.

5. Bu, J.; Liu, Z.; Ma, W.; et al. Selective electrocatalytic semihydrogenation of acetylene impurities for the production of polymer-grade ethylene. Nat. Catal. 2021, 4, 557-64.

6. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013, 135, 1167-76.

7. Chen, Y.; Kang, Y.; Zhao, Y.; et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J. Energy. Chem. 2021, 59, 83-99.

8. Xiao, J.; Shi, F.; Glossmann, T.; Burnett, C.; Liu, Z. From laboratory innovations to materials manufacturing for lithium-based batteries. Nat. Energy. 2023, 8, 329-39.

9. Yuan, K.; Tu, T.; Shen, C.; et al. Self-ball milling strategy to construct high-entropy oxide coated LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance. J. Adv. Ceram. 2022, 11, 882-92.

10. Ding, X.; Zhou, Q.; Li, X.; Xiong, X. Fast-charging anodes for lithium ion batteries: progress and challenges. Chem. Commun. 2024, 60, 2472-88.

11. Kou, P.; Zhang, Z.; Wang, Z.; et al. Opportunities and challenges of layered lithium-rich manganese-based cathode materials for high energy density lithium-ion batteries. Energy. Fuels. 2023, 37, 18243-65.

12. Miao, N.; Gong, Y.; Zhang, H.; et al. Discovery of two-dimensional hexagonal MBene HfBO and exploration on its potential for lithium-ion storage. Angew. Chem. Int. Ed. Engl. 2023, 62, e202308436.

13. Miao, N.; Yan, Y.; Wang, J. A rising layered boride family for energy and catalysis applications: novel hexagonal MAB phases and MBenes. ChemSusChem 2024, 17, e202400229.

14. Shen, Q.; He, Y.; Wang, J. Biomass-derived two-dimensional N,O-doped carbon with embedded binary-metal nanoparticles enables dendrite-free potassium-metal anodes. J. Mater. Chem. A. 2023, 11, 9829-39.

15. Wang, J.; Ye, T. N.; Gong, Y.; et al. Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB. Nat. Commun. 2019, 10, 2284.

16. Shen, Q.; Shi, Y.; He, Y.; Wang, J. Defect engineering of hexagonal MAB phase Ti2InB2 as anode of lithium-ion battery with excellent cycling stability. Adv. Sci. 2024, 11, e2308589.

17. Miao, N.; Wang, J.; Gong, Y.; et al. Computational prediction of boron-based MAX phases and MXene derivatives. Chem. Mater. 2020, 32, 6947-57.

18. Jang, I.; Go, W.; Song, B.; Park, H.; Kang, Y. C.; Chun, J. Improving ionic conductivity of von-Alpen-type NASICON ceramic electrolytes via magnesium doping. J. Adv. Ceram. 2023, 12, 1058-66.

19. Liu, M.; Wu, F.; Gong, Y.; et al. Interfacial-catalysis-enabled layered and inorganic-rich SEI on hard carbon anodes in ester electrolytes for sodium-ion batteries. Adv. Mater. 2023, 35, e2300002.

20. Kate, R. S.; Jadhav, H. S.; Chothe, U. P.; et al. Critical review of the recent progress and challenges of polyanion Na3V2(PO4)3 cathode materials in rechargeable sodium-ion batteries. J. Mater. Chem. A. 2024, 12, 7418-51.

21. Wang, L.; Tian, H.; Yao, X.; Cai, Y.; Gao, Z.; Su, Z. Research progress and modification measures of anode and cathode materials for sodium-ion batteries. ChemElectroChem 2024, 11, e202300414.

22. Eftekhari, A.; Jian, Z.; Ji, X. Potassium secondary batteries. ACS. Appl. Mater. Interfaces. 2017, 9, 4404-19.

23. Zhang, W.; Liu, Y.; Guo, Z. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 2019, 5, eaav7412.

24. Han, J.; Li, G. N.; Liu, F.; et al. Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries. Chem. Commun. 2017, 53, 1805-8.

25. Chihara, K.; Katogi, A.; Kubota, K.; Komaba, S. KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. Chem. Commun. 2017, 53, 5208-11.

26. Kim, H.; Seo, D. H.; Kim, J. C.; et al. Investigation of potassium storage in layered P3-type K0.5MnO2 cathode. Adv. Mater. 2017, 29.

27. Kim, H.; Kim, J. C.; Bo, S.; Shi, T.; Kwon, D.; Ceder, G. K-ion batteries based on a P2-type K0.6CoO2 cathode. Adv. Energy. Mater. 2017, 7, 1700098.

28. Yang, Z.; Li, W.; Zhang, G.; et al. Constructing Sb-O-C bond to improve the alloying reaction reversibility of free-standing Sb2Se3 nanorods for potassium-ion batteries. Nano. Energy. 2022, 93, 106764.

29. Li, W.; Yang, Z.; Zuo, J.; Wang, J.; Li, X. Emerging carbon-based flexible anodes for potassium-ion batteries: progress and opportunities. Front. Chem. 2022, 10, 1002540.

30. Kim, H.; Kim, J. C. Opportunities and challenges in cathode development for non-lithium-ion batteries. eScience 2024, 4, 100232.

31. Liu, X.; Chu, J.; Wang, Z.; et al. Design and optimization of carbon materials as anodes for advanced potassium-ion storage. Rare. Met. 2024, 43, 5516-48.

32. Jonderian, A.; Jia, S.; Yoon, G.; et al. Accelerated development of high voltage Li-ion cathodes. Adv. Energy. Mater. 2022, 12, 2201704.

33. Guo, X.; Wang, Z.; Yang, J.; Gong, X. Machine-learning assisted high-throughput discovery of solid-state electrolytes for Li-ion batteries. J. Mater. Chem. A. 2024, 12, 10124-36.

34. Xiao, R.; Li, H.; Chen, L. High-throughput computational discovery of K2CdO2 as an ion conductor for solid-state potassium-ion batteries. J. Mater. Chem. A. 2020, 8, 5157-62.

35. Wang, Y.; Liu, J.; Du, P.; Sun, Z.; Sun, Q. Screening topological quantum cathode materials for K-ion batteries by graph neural network and first-principles calculations. ACS. Appl. Energy. Mater. 2023, 6, 4503-10.

36. Toffoletti, L.; Kirchhain, H.; Landesfeind, J.; et al. Lithium ion mobility in lithium phosphidosilicates: crystal structure, 7Li, 29Si, and 31P MAS NMR spectroscopy, and impedance spectroscopy of Li8SiP4 and Li2SiP2. Chemistry 2016, 22, 17635-45.

37. Haffner, A.; Bräuniger, T.; Johrendt, D. Supertetrahedral networks and lithium-ion mobility in Li2SiP2 and LiSi2P3. Angew. Chem. Int. Ed. Engl. 2016, 55, 13585-8.

38. Haffner, A.; Hatz, A. K.; Moudrakovski, I.; Lotsch, B. V.; Johrendt, D. Fast sodium-ion conductivity in supertetrahedral phosphidosilicates. Angew. Chem. Int. Ed. Engl. 2018, 57, 6155-60.

39. Haffner, A.; Hatz, A. K.; Zeman, O. E. O.; Hoch, C.; Lotsch, B. V.; Johrendt, D. Polymorphism and fast potassium-ion conduction in the T5 supertetrahedral phosphidosilicate KSi2P3. Angew. Chem. Int. Ed. Engl. 2021, 60, 13641-6.

40. Zhang, Z.; Guo, J.; Sun, S.; et al. Optimized valence state of Co and Ni in high-entropy alloy for high active-stable OER. Rare. Met. 2023, 42, 3607-13.

41. Kabanov, A. A.; Morkhova, Y. A.; Bezuglov, I. A.; Blatov, V. A. 7.13 - Computational design of materials for metal-ion batteries. In: Comprehensive inorganic chemistry III. Elsevier; 2023. pp. 404-29.

42. Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth. Des. 2014, 14, 3576-86.

43. Anurova, N.; Blatov, V.; Ilyushin, G.; Blatova, O.; Ivanovschitz, A.; Demyanets, L. Migration maps of Li+ cations in oxygen-containing compounds. Solid. State. Ionics. 2008, 179, 2248-54.

44. Meutzner, F.; Münchgesang, W.; Kabanova, N. A.; et al. On the way to new possible Na-ion conductors: the voronoi-dirichlet approach, data mining and symmetry considerations in ternary Na oxides. Chemistry 2015, 21, 16601-8.

45. Morkhova, Y. A.; Rothenberger, M.; Leisegang, T.; Adams, S.; Blatov, V. A.; Kabanov, A. A. Computational search for novel Zn-ion conductors - a crystallochemical, bond valence, and density functional study. J. Phys. Chem. C. 2021, 125, 17590-9.

46. Slater, J. C. Atomic radii in crystals. J. Chem. Phys. 1964, 41, 3199-204.

47. Shannon, R. D.; Kabanova, N. A.; Fischer, R. X. Empirical electronic polarizabilities: deviations from the additivity rule. II. Structures exhibiting ion conductivity. Cryst. Res. Technol. 2019, 54, 1900037.

48. Chen, H.; Adams, S. Bond softness sensitive bond-valence parameters for crystal structure plausibility tests. IUCrJ 2017, 4, 614-25.

49. Chen, H.; Wong, L. L.; Adams, S. SoftBV - a software tool for screening the materials genome of inorganic fast ion conductors. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 2019, 75, 18-33.

50. Wong, L. L.; Phuah, K. C.; Dai, R.; Chen, H.; Chew, W. S.; Adams, S. Bond valence pathway analyzer - an automatic rapid screening tool for fast ion conductors within softBV. Chem. Mater. 2021, 33, 625-41.

51. He, B.; Mi, P.; Ye, A.; et al. A highly efficient and informative method to identify ion transport networks in fast ion conductors. Acta. Mater. 2021, 203, 116490.

52. Wong, L. L.; Chen, H.; Adams, S. Design of fast ion conducting cathode materials for grid-scale sodium-ion batteries. Phys. Chem. Chem. Phys. 2017, 19, 7506-23.

53. Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 2002, 1, 123-8.

54. Gu, W.; Ezbiri, M.; Prasada, R. R.; Avdeev, M.; Adams, S. Effects of penta- and trivalent dopants on structure and conductivity of Li7La3Zr2O12. Solid. State. Ionics. 2015, 274, 100-5.

55. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864-71.

56. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B. Condens. Matter. 1994, 50, 17953-79.

57. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. Condens. Matter. 1996, 54, 11169-86.

58. Wang, V.; Xu, N.; Liu, J.; Tang, G.; Geng, W. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

59. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-8.

60. Lalroliana, B.; Lalmuanchhana; Lalhriatzuala. DFT + U study of electronic and optical properties of Cu3TMTe4: TM = V, Nb, Ta with incorporation of SOC. Mater. Today. Proc. 2023, In Press.

61. Toukmaji, A. Y.; Board, J. A. Ewald summation techniques in perspective: a survey. Comput. Phys. Commun. 1996, 95, 73-92.

62. Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978-85.

63. Tan, P.; Wei, Z.; Shyy, W.; Zhao, T. Prediction of the theoretical capacity of non-aqueous lithium-air batteries. Appl. Energy. 2013, 109, 275-82.

64. Toriyama, M. Y.; Kaufman, J. L.; Van der Ven, A. Potassium ordering and structural phase stability in layered KxCoO2. ACS. Appl. Energy. Mater. 2019, 2, 2629-36.

65. Herr, J. D.; Steele, R. P. Accelerating ab initio molecular dynamics simulations by linear prediction methods. Chem. Phys. Lett. 2016, 661, 42-7.

66. Kim, J. S.; Jung, W. D.; Choi, S.; et al. Thermally induced S-sublattice transition of Li3PS4 for fast lithium-ion conduction. J. Phys. Chem. Lett. 2018, 9, 5592-7.

67. Eremin, R.; Kabanova, N.; Morkhova, Y.; Golov, A.; Blatov, V. High-throughput search for potential potassium ion conductors: a combination of geometrical-topological and density functional theory approaches. Solid. State. Ionics. 2018, 326, 188-99.

68. Eisenmann, B.; Somer, M. On new ternary alkali metal phosphides: K2CuP, NaZnP and K4CdP2. Z. Naturforsch. B. 1985, 40, 1419-23.

69. Eisenmann, B.; Somer, M. Intermetallic compounds with HgCl2 isoelectronic anions: crystal structure and vibrational spectra of Na4HgP2, K4ZnP2, K4CdP2 and K4HgP2. Z. Naturforsch. B. 1989, 44, 1228-32.

70. Eisenmann, B.; Klein, J.; Somer, M. Linear anions [CuAs2]5-, [AuP2]5- and [AuAs2]5- in potassium compounds. J. Alloys. Compd. 1992, 178, 431-9.

71. Somer, M.; Hartweg, M.; Peters, K.; von Schnering, H. G. Crystal structure of tetrapotassium diphosphidoberyllate, K4BeP2. Zeitschrift. für. Kristallographie. 1990, 192, 263-4.

72. Savelsberg, G.; Schäfer, H. On the preparation and crystal structure of K3CU3P. Z. Naturforsch. B. 1978, 33, 590-2.

73. Eisenmann, B.; Klein, J.; Somer, M. Crystal structure of dipotassium catena-phosphidoaurate(I), K2AuP. Crystall. Mater. 1991, 197, 277-8.

74. Orikasa, Y.; Gogyo, Y.; Yamashige, H.; et al. Ionic conduction in lithium ion battery composite electrode governs cross-sectional reaction distribution. Sci. Rep. 2016, 6, 26382.

75. Blase, W.; Cordier, G.; Somer, M. Crystal structure of tripotassium catenadi-μ-phosphido-indate, K3InP2. Zeitschrift. für. Kristallographie. 1991, 195, 109-10.

76. Flores, E. M.; Moreira, M. L.; Piotrowski, M. J. Structural and electronic properties of bulk ZnX (X = O, S, Se, Te), ZnF2, and ZnO/ZnF2: a DFT investigation within PBE, PBE + U, and hybrid HSE functionals. J. Phys. Chem. A. 2020, 124, 3778-85.

77. Shevchenko, A. P.; Shabalin, A. A.; Karpukhin, I. Y.; Blatov, V. A. Topological representations of crystal structures: generation, analysis and implementation in the TopCryst system. Sci. Technol. Adv. Mater. Methods. 2022, 2, 250-65.

78. Ohse, L.; Somer, M.; Blase, W.; Cordier, G. Compounds with SiS2 isoelectronic anions 1[AlX4/23-] and 1[InP4/23-]: synthesis, crystal structures and vibrational spectra of Na3[AlX2], K2Na[AlX2] and K3[InP2] (X = P, As). Z. Naturforsch. B. 1993, 48, 1027-34.

79. Schurz, C. M.; Schleid, T. Chains of trans-edge connected [ZM4] tetrahedra (Z=N and O) in the lanthanide nitride chlorides M2NCl3 and Na2M4ONCl9 (M=La–Nd). J. Alloys. Compd. 2009, 485, 110-8.

80. Wu, W.; Sun, Q. Screening topological quantum materials for Na-ion battery cathode. ACS. Mater. Lett. 2022, 4, 175-80.

81. Hosaka, T.; Shimamura, T.; Kubota, K.; Komaba, S. Polyanionic compounds for potassium-ion batteries. Chem. Rec. 2019, 19, 735-45.

82. Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899-908.

83. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-4.

84. Ling, S.; Gao, J.; Xiao, R.; Chen, L. High-throughput theoretical design of lithium battery materials. Chin. Phys. B. 2016, 25, 018208.

85. Nishitani, Y.; Adams, S.; Ichikawa, K.; Tsujita, T. Evaluation of magnesium ion migration in inorganic oxides by the bond valence site energy method. Solid. State. Ionics. 2018, 315, 111-5.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/