REFERENCES
1. Scheffler M, Aeschlimann M, Albrecht M, et al. FAIR data enabling new horizons for materials research. Nature 2022;604:635-42.
2. Gupta V, Choudhary K, Mao Y, et al. MPpredictor: an artificial intelligence-driven web tool for composition-based material property prediction. J Chem Inf Model 2023;63:1865-71.
3. Zhang L, He M, Huang E, et al. Overcoming language barrier for scientific studies via unsupervised literature learning: case study on solar cell materials prediction. Solar RRL 2024;8:2301079.
4. Shao S, Yan L, Zhang L, et al. Data-driven exploration of terbium-doped tungsten oxide for ultra-precise detection of 3H-2B: implications for gas sensor applications. Chem Eng J 2024;487:149680.
5. Wang S, Huang Y, Hu W, Zhang L. Data-driven optimization and machine learning analysis of compatible molecules for halide perovskite material. npj Comput Mater 2024;10:1297.
6. Zhang J, Zhang L, Sun Y, Li W, Quhe R. Named entity recognition in the perovskite field based on convolutional neural networks and MatBERT. Comput Mater Sci 2024;240:113014.
7. Trewartha A, Walker N, Huo H, et al. Quantifying the advantage of domain-specific pre-training on named entity recognition tasks in materials science. Patterns 2022;3:100488.
8. Luu RK, Buehler MJ. BioinspiredLLM: conversational large language model for the mechanics of biological and bio-inspired materials. Adv Sci 2024;11:e2306724.
9. Gupta T, Zaki M, Krishnan NMA, Mausam. MatSciBERT: a materials domain language model for text mining and information extraction. npj Comput Mater 2022;8:784.
10. Li Y, Feng X, Liu H, et al. Route to high-energy density polymeric nitrogen t-N via He-N compounds. Nat Commun 2018;9:722.
11. Tong Q, Gao P, Liu H, et al. Combining machine learning potential and structure prediction for accelerated materials design and discovery. J Phys Chem Lett 2020;11:8710-20.
12. Marchenko EI, Fateev SA, Petrov AA, et al. Database of two-dimensional hybrid perovskite materials: open-access collection of crystal structures, band gaps, and atomic partial charges predicted by machine learning. Chem Mater 2020;32:7383-8.
13. Dunn A, Wang Q, Ganose A, Dopp D, Jain A. Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm. npj Comput Mater 2020;6:138.
14. Omee SS, Wei L, Hu M, Hu J. Crystal structure prediction using neural network potential and age-fitness Pareto genetic algorithm. J Mater Inf 2024;4:1.
15. Fu N, Hu J, Feng Y, Morrison G, Loye HZ, Hu J. Composition based oxidation state prediction of materials using deep learning language models. Adv Sci 2023;10:e2301011.
16. Pickard CJ, Needs RJ. Ab initio random structure searching. J Phys Condens Matter 2011;23:053201.
18. Wang Y, Lv J, Zhu L, Ma Y. CALYPSO: a method for crystal structure prediction. Comput Phys Commun 2012;183:2063-70.
19. Wang Y, Lv J, Zhu L, et al. Materials discovery via CALYPSO methodology. J Phys Condens Matter 2015;27:203203.
20. Wang J, Gao H, Han Y, et al. MAGUS: machine learning and graph theory assisted universal structure searcher. Natl Sci Rev 2023;10:nwad128.
21. Song Q, Zhang N, Liu J, et al. Efficient continuous wave and broad tunable lasers with the Tm:GdScO3 crystal. Opt Lett 2023;48:640-3.
22. Cai E, Du L, Zhao J, et al. Sub-100 fs pulses lasers from Yb:GdScO3 crystal based on semiconductor saturable absorber mirrors. Infrared Phys Technol 2024;139:105309.
23. Eremeev K, Loiko P, Zhao C, et al. Growth, spectroscopy and laser operation of Tm,Ho:GdScO3 perovskite crystal. Opt Express 2024;32:13527-42.
24. Dong J, Li J, Wang Q, et al. Crystal growth and spectroscopic analysis of Ho,Eu:GdScO3 crystal for 3 μm mid-infrared emission. J Lumin 2023;254:119515.
25. Guo R, Wang F, Wang S, et al. Exploration of the crystal growth and crystal-field effect of Yb3+ in orthorhombic GdScO3 and LaLuO3 crystals. Cryst Growth Des 2023;23:3761-8.
26. Stegmaier S, Voss J, Reuter K, Luntz AC. Li+ defects in a solid-state Li ion battery: theoretical insights with a Li3OCl electrolyte. Chem Mater 2017;29:4330-40.
27. Moradabadi A, Kaghazchi P. Effect of strain on polaron hopping and electronic conductivity in bulk LiCoO2. Phys Rev Appl 2017;7:064008.
28. He Y, Galli G. Perovskites for solar thermoelectric applications: a first principle study of CH3NH3AI3 (A = Pb and Sn). Chem Mater 2014;26:5394-400.
29. Talapatra A, Uberuaga BP, Stanek CR, Pilania G. A machine learning approach for the prediction of formability and thermodynamic stability of single and double perovskite oxides. Chem Mater 2021;33:845-58.
30. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter 1993;47:558-61.
31. Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 2013;65:1501-9.
32. Liu M, Meng S. Atomly.net materials database and its application in inorganic chemistry. Sci Sin Chim 2023;53:19-25.
33. Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 2013;1:011002.
34. Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Z Krist Cryst Mater 2005;220:567-70.
35. Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 2002;14:2717.
36. Kumar A, Thakur P, Sharma R, Puthirath AB, Ajayan PM, Narayanan TN. Photo rechargeable Li-ion batteries using nanorod heterostructure electrodes. Small 2021;17:e2105029.
37. Boruah BD, Wen B, De Volder M. Light rechargeable lithium-ion batteries using V2O5 cathodes. Nano Lett 2021;21:3527-32.
38. Dey K, Roose B, Stranks SD. Optoelectronic properties of low-bandgap halide perovskites for solar cell applications. Adv Mater 2021;33:e2102300.
39. Zhang Y, Zhang J, Gao W, et al. Near-edge band structures and band gaps of Cu-based semiconductors predicted by the modified Becke-Johnson potential plus an on-site Coulomb U. J Chem Phys 2013;139:184706.
40. Ahn J, Guo GY, Nagaosa N. Low-frequency divergence and quantum geometry of the bulk photovoltaic effect in topological semimetals. Phys Rev X 2020;10:041041.
41. Xu L, Li Y, Shi J, et al. Suppressing shallow defect of printable mesoscopic perovskite solar cells with a N719@TiO2 inorganic–organic core–shell structured additive. Solar RRL 2020;4:2000042.
42. Zhang L, Li S, Hu W. First-principles investigation on adsorption of anchors on two-dimensional halide perovskite material. Appl Surf Sci 2022;604:154527.
43. Cohen B, Alafi R, Beinglass J, et al. In-gap states and carrier recombination in quasi-2D perovskite films. Solar RRL 2023;7:2300813.
44. Raekers M, Kuepper K, Bartkowski S, et al. Electronic and magnetic structure of RScO3 (R = Sm,Gd,Dy) from x-ray spectroscopies and first-principles calculations. Phys Rev B 2009;79:125114.
45. Bao X, Ou Q, Xu Z, Zhang Y, Bao Q, Zhang H. Band structure engineering in 2D materials for optoelectronic applications. Adv Mater Technol 2018;3:1800072.