1. Scheffler M, Aeschlimann M, Albrecht M, et al. FAIR data enabling new horizons for materials research. Nature 2022;604:635-42.
2. Gupta V, Choudhary K, Mao Y, et al. MPpredictor: an artificial intelligence-driven web tool for composition-based material property prediction. J Chem Inf Model 2023;63:1865-71.
3. Zhang L, He M, Huang E, et al. Overcoming language barrier for scientific studies via unsupervised literature learning: case study on solar cell materials prediction. Solar RRL 2024;8:2301079.
4. Shao S, Yan L, Zhang L, et al. Data-driven exploration of terbium-doped tungsten oxide for ultra-precise detection of 3H-2B: implications for gas sensor applications. Chem Eng J 2024;487:149680.
5. Wang S, Huang Y, Hu W, Zhang L. Data-driven optimization and machine learning analysis of compatible molecules for halide perovskite material. npj Comput Mater 2024;10:1297.
6. Zhang J, Zhang L, Sun Y, Li W, Quhe R. Named entity recognition in the perovskite field based on convolutional neural networks and MatBERT. Comput Mater Sci 2024;240:113014.
7. Trewartha A, Walker N, Huo H, et al. Quantifying the advantage of domain-specific pre-training on named entity recognition tasks in materials science. Patterns 2022;3:100488.
8. Luu RK, Buehler MJ. BioinspiredLLM: conversational large language model for the mechanics of biological and bio-inspired materials. Adv Sci 2024;11:e2306724.
9. Gupta T, Zaki M, Krishnan NMA, Mausam. MatSciBERT: a materials domain language model for text mining and information extraction. npj Comput Mater 2022;8:784.
10. Li Y, Feng X, Liu H, et al. Route to high-energy density polymeric nitrogen t-N via He-N compounds. Nat Commun 2018;9:722.
11. Tong Q, Gao P, Liu H, et al. Combining machine learning potential and structure prediction for accelerated materials design and discovery. J Phys Chem Lett 2020;11:8710-20.
12. Marchenko EI, Fateev SA, Petrov AA, et al. Database of two-dimensional hybrid perovskite materials: open-access collection of crystal structures, band gaps, and atomic partial charges predicted by machine learning. Chem Mater 2020;32:7383-8.
13. Dunn A, Wang Q, Ganose A, Dopp D, Jain A. Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm. npj Comput Mater 2020;6:138.
14. Omee SS, Wei L, Hu M, Hu J. Crystal structure prediction using neural network potential and age-fitness Pareto genetic algorithm. J Mater Inf 2024;4:1.
15. Fu N, Hu J, Feng Y, Morrison G, Loye HZ, Hu J. Composition based oxidation state prediction of materials using deep learning language models. Adv Sci 2023;10:e2301011.
16. Pickard CJ, Needs RJ. Ab initio random structure searching. J Phys Condens Matter 2011;23:053201.
17. Pickard CJ, Needs RJ. High-pressure phases of silane. Phys Rev Lett 2006;97:045504.
18. Wang Y, Lv J, Zhu L, Ma Y. CALYPSO: a method for crystal structure prediction. Comput Phys Commun 2012;183:2063-70.
19. Wang Y, Lv J, Zhu L, et al. Materials discovery via CALYPSO methodology. J Phys Condens Matter 2015;27:203203.
20. Wang J, Gao H, Han Y, et al. MAGUS: machine learning and graph theory assisted universal structure searcher. Natl Sci Rev 2023;10:nwad128.
21. Song Q, Zhang N, Liu J, et al. Efficient continuous wave and broad tunable lasers with the Tm:GdScO3 crystal. Opt Lett 2023;48:640-3.
22. Cai E, Du L, Zhao J, et al. Sub-100 fs pulses lasers from Yb:GdScO3 crystal based on semiconductor saturable absorber mirrors. Infrared Phys Technol 2024;139:105309.
23. Eremeev K, Loiko P, Zhao C, et al. Growth, spectroscopy and laser operation of Tm,Ho:GdScO3 perovskite crystal. Opt Express 2024;32:13527-42.
24. Dong J, Li J, Wang Q, et al. Crystal growth and spectroscopic analysis of Ho,Eu:GdScO3 crystal for 3 μm mid-infrared emission. J Lumin 2023;254:119515.
25. Guo R, Wang F, Wang S, et al. Exploration of the crystal growth and crystal-field effect of Yb3+ in orthorhombic GdScO3 and LaLuO3 crystals. Cryst Growth Des 2023;23:3761-8.
26. Stegmaier S, Voss J, Reuter K, Luntz AC. Li+ defects in a solid-state Li ion battery: theoretical insights with a Li3OCl electrolyte. Chem Mater 2017;29:4330-40.
27. Moradabadi A, Kaghazchi P. Effect of strain on polaron hopping and electronic conductivity in bulk LiCoO2. Phys Rev Appl 2017;7:064008.
28. He Y, Galli G. Perovskites for solar thermoelectric applications: a first principle study of CH3NH3AI3 (A = Pb and Sn). Chem Mater 2014;26:5394-400.
29. Talapatra A, Uberuaga BP, Stanek CR, Pilania G. A machine learning approach for the prediction of formability and thermodynamic stability of single and double perovskite oxides. Chem Mater 2021;33:845-58.
30. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter 1993;47:558-61.
31. Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 2013;65:1501-9.
32. Liu M, Meng S. Atomly.net materials database and its application in inorganic chemistry. Sci Sin Chim 2023;53:19-25.
33. Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 2013;1:011002.
34. Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Z Krist Cryst Mater 2005;220:567-70.
35. Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 2002;14:2717.
36. Kumar A, Thakur P, Sharma R, Puthirath AB, Ajayan PM, Narayanan TN. Photo rechargeable Li-ion batteries using nanorod heterostructure electrodes. Small 2021;17:e2105029.
37. Boruah BD, Wen B, De Volder M. Light rechargeable lithium-ion batteries using V2O5 cathodes. Nano Lett 2021;21:3527-32.
38. Dey K, Roose B, Stranks SD. Optoelectronic properties of low-bandgap halide perovskites for solar cell applications. Adv Mater 2021;33:e2102300.
39. Zhang Y, Zhang J, Gao W, et al. Near-edge band structures and band gaps of Cu-based semiconductors predicted by the modified Becke-Johnson potential plus an on-site Coulomb U. J Chem Phys 2013;139:184706.
40. Ahn J, Guo GY, Nagaosa N. Low-frequency divergence and quantum geometry of the bulk photovoltaic effect in topological semimetals. Phys Rev X 2020;10:041041.
41. Xu L, Li Y, Shi J, et al. Suppressing shallow defect of printable mesoscopic perovskite solar cells with a N719@TiO2 inorganic–organic core–shell structured additive. Solar RRL 2020;4:2000042.
42. Zhang L, Li S, Hu W. First-principles investigation on adsorption of anchors on two-dimensional halide perovskite material. Appl Surf Sci 2022;604:154527.
43. Cohen B, Alafi R, Beinglass J, et al. In-gap states and carrier recombination in quasi-2D perovskite films. Solar RRL 2023;7:2300813.
44. Raekers M, Kuepper K, Bartkowski S, et al. Electronic and magnetic structure of RScO3 (R = Sm,Gd,Dy) from x-ray spectroscopies and first-principles calculations. Phys Rev B 2009;79:125114.
45. Bao X, Ou Q, Xu Z, Zhang Y, Bao Q, Zhang H. Band structure engineering in 2D materials for optoelectronic applications. Adv Mater Technol 2018;3:1800072.
46. Osterhoudt GB, Diebel LK, Gray MJ, et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat Mater 2019;18:471-5.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.