REFERENCES
1. Skinner SJ. Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes. Int J Inorg Mater 2001;3:113-21.
2. Stambouli A, Traversa E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sustain Energy Rev 2002;6:433-55.
3. Schuler AJ, Wuillemin Z, Hessler-wyser A, Van Herle J. Sulfur as pollutant species on the cathode side of a SOFC system. ECS Trans 2009;25:2845-52.
4. Xiong Y, Yamaji K, Horita T, et al. Sulfur poisoning of SOFC cathodes. J Electrochem Soc 2009;156:B588-92.
5. Wang F, Kishimoto H, Ishiyama T, et al. A review of sulfur poisoning of solid oxide fuel cell cathode materials for solid oxide fuel cells. J Power Sources 2020;478:228763.
6. Liu RR, Taniguchi S, Shiratori Y, Ito K, Sasaki K. Influence of SO2 on the long-term durability of SOFC cathodes. ECS Trans 2011;35:2255-60.
7. Wang F, Yamaji K, Cho D, et al. Sulfur poisoning on La0.6Sr0.4Co0.2Fe0.8O3 cathode for SOFCs. J Electrochem Soc 2011;158:B1391-7.
8. Wang DJ, Jing L. Effect of SO2 on performance of solid oxide fuel cell cathodes. Available from: https://www.semanticscholar.org/paper/Effect-of-SO2-on-Performance-of-Solid-Oxide-Fuel-De-jun-Jing/82c3339827f4bedfe62b0270ecab17a1aac3d0ca#citing-papers [Last accessed on 9 Mar 2023].
9. Wang F, Yamaji K, Cho D, et al. Effect of strontium concentration on sulfur poisoning of LSCF cathodes. Solid State Ionics 2012;225:157-60.
10. Wang F, Yamaji K, Cho D, et al. Evaluation of sulfur dioxide poisoning for LSCF cathodes. Fuel Cells 2013;13:520-5.
11. Wang C, Jiang SP. Mechanism of SO2 poisoning on the electrochemical activity of LSCF and LSM electrodes. ECS Trans 2015;68:1023-9.
12. Wang F, Kishimoto H, Develos-bagarinao K, Yamaji K, Horita T, Yokokawa H. Interrelation between sulfur poisoning and performance degradation of LSCF cathode for SOFCs. J Electrochem Soc 2016;163:F899-904.
13. Darvish S, Asadikiya M, Hu B, Singh P, Zhong Y. Thermodynamic prediction of the effect of CO2 to the stability of (La0.8Sr0.2)0.98MnO3±δ system. Int J Hydrogen Energy 2016;41:10239-48.
14. Darvish S, Gopalan S, Zhong Y. Thermodynamic stability maps for the La0.6Sr0.4Co0.2Fe0.8O3±δ-CO2-O2 system for application in solid oxide fuel cells. J Power Sources 2016;336:351-9.
15. Darvish S, Wang CC, Jiang SP, Zhong Y. Thermodynamic stability mapping and electrochemical study of La1-xSrxCo0.2Fe0.8O3±δ (x = 0.2-0.4) as a cathode of solid oxide fuel cells in the presence of SO2. Electrochim Acta 2018;287:68-77.
16. Darvish S, Hu B, Singh P, Zhong Y. Thermodynamic and experimental evaluation of La1-xSrxMnO3±δ cathode in presence of Cr-containing humidified air. JOM 2019;71:3814-24.
17. Wang R, Parent LR, Gopalan S, Zhong Y. Experimental and computational investigations on the SO2 poisoning of (La0.8Sr0.2)0.95MnO3 cathode materials. Adv Powder Mater 2023;2:100062.
18. Walker E, Ammal SC, Suthirakun S, Chen F, Terejanu GA, Heyden A. Mechanism of sulfur poisoning of Sr2Fe1.5Mo0.5O6-δ perovskite anode under solid oxide fuel cell conditions. J Phys Chem C 2014;118:23545-52.
19. Su M, Huan D, Hu X, Zhu K, Peng R, Xia C. Understanding the favorable CO2 tolerance of Ca-doped LaFeO3 perovskite cathode for solid oxide fuel cells. J Power Sources 2022;521:230907.
20. Ta N, Chen M, Zhang L, et al. Numerical simulation of kinetic demixing and decomposition in a LaCoO3-δ oxygen membrane under an oxygen potential gradient. J Membr Sci 2018;548:526-39.
21. Wang CC, Darvish S, Chen K, et al. Combined Cr and S poisoning of La0.8Sr0.2MnO3-δ (LSM) cathode of solid oxide fuel cells. Electrochim Acta 2019;312:202-12.
22. Xu H, Cheng K, Chen M, Zhang L, Brodersen K, Du Y. Interdiffusion between gadolinia doped ceria and yttria stabilized zirconia in solid oxide fuel cells: experimental investigation and kinetic modeling. J Power Sources 2019;441:227152.
23. Sabarou H, Wang R, Zhong Y. The origin of the phase separation in (La0.8Sr0.2)0.95(CrxFe1-x)O3±δ perovskites for oxygen transport membranes applications. Solid State Ion 2020;349:115293.
24. Cheng K, Xu H, Zhang L, et al. Computational engineering of the oxygen electrode-electrolyte interface in solid oxide fuel cells. NPJ Comput Mater 2021;7:119.
25. Zhang W, Barfod R. Investigation of degradation mechanisms of LSCF based SOFC cathodes-by CALPHAD modeling and experiments. Available from: https://orbit.dtu.dk/en/publications/investigation-of-degradation-mechanisms-of-lscf-based-sofc-cathod [Last accessed on 9 Mar 2023].
26. Kumar RV, Kay DAR. Thermodynamics of the Ca-S-O, Mg-S-O, and La-S-O systems at high temperatures. Metall Trans B 1985;16B:287-94.
27. Dwivedi RK, Kay DAR. Thermodynamics of the oxidation of rare earth oxysulfides at high temperatures. Metall Trans B 1984;15B:523-8.
28. Kellogg HH. A critical review of sulfation equilibira. Available from: https://archive.org/details/sim_american-institute-of-mining-metallurgical-petroleum_1964-12_230_7/page/n131/mode/2up [Last accessed on 9 Mar 2023].
29. Levy C, Zhong Y, Morel C, Marlin S. Thermodynamic stabilities of La2Zr2O7 and SrZrO3 in SOFC and their relationship with LSM synthesis processes. J Electrochem Soc 2010;157:B1597-601.
30. Gao J, Li L, Yin Z, Zhang J, Lu S, Tan X. Poisoning effect of SO2 on the oxygen permeation behavior of La0.6Sr0.4Co0.2Fe0.8O3-δ perovskite hollow fiber membranes. J Membr Sci 2014;455:341-8.
31. Liu RR, Wang DJ, Jing L. Effect of SO2 on the performance of LSCF cathode. Adv Mater Res 2014;902:41-4.
32. Gopalan S, Levitas B. Core-shell heterostructures as functional materials for solid oxide fuel cell (SOFC) electrodes. Available from: https://www.osti.gov/biblio/1872369/ [Last accessed on 9 Mar 2023].