REFERENCES

1. Ma, Y.; Liu, H.; Wu, J.; et al. The adverse health effects of bisphenol A and related toxicity mechanisms. Environ. Res. 2019, 176, 108575.

2. Vilarinho, F.; Sendón, R.; van der Kellen, A.; Vaz, M.; Silva, A. S. Bisphenol A in food as a result of its migration from food packaging. Trends. Food. Sci. Technol. 2019, 91, 33-65.

3. Hahladakis, J. N.; Iacovidou, E.; Gerassimidou, S. An overview of the occurrence, fate, and human risks of the bisphenol-A present in plastic materials, components, and products. Integr. Environ. Assess. Manag. 2023, 19, 45-62.

4. Krivohlavek, A.; Mikulec, N.; Budeč, M.; et al. Migration of BPA from food packaging and household products on the Croatian market. Int. J. Environ. Res. Public. Health. 2023, 20, 2877.

5. Khan, N. G.; Correia, J.; Adiga, D.; et al. A comprehensive review on the carcinogenic potential of bisphenol A: clues and evidence. Environ. Sci. Pollut. Res. Int. 2021, 28, 19643-63.

6. Abraham, A.; Chakraborty, P. A review on sources and health impacts of bisphenol A. Rev. Environ. Health. 2020, 35, 201-10.

7. Tan, H.; Zheng, Z.; Wang, S.; Yang, L.; Widelka, M.; Chen, D. Neonatal exposure to bisphenol analogues disrupts genital development in male mice. Environ. Pollut. 2023, 330, 121783.

8. Lv, Y.; Li, L.; Fang, Y.; et al. In utero exposure to bisphenol A disrupts fetal testis development in rats. Environ. Pollut. 2019, 246, 217-24.

9. Diamante, G.; Cely, I.; Zamora, Z.; et al. Systems toxicogenomics of prenatal low-dose BPA exposure on liver metabolic pathways, gut microbiota, and metabolic health in mice. Environ. Int. 2021, 146, 106260.

10. Frankowski, R.; Zgoła-Grześkowiak, A.; Grześkowiak, T.; Sójka, K. The presence of bisphenol A in the thermal paper in the face of changing European regulations - a comparative global research. Environ. Pollut. 2020, 265, 114879.

11. Frankowski, R.; Zgoła-Grześkowiak, A.; Smułek, W.; Grześkowiak, T. Removal of bisphenol A and its potential substitutes by biodegradation. Appl. Biochem. Biotechnol. 2020, 191, 1100-10.

12. Wang, J.; Hong, X.; Liu, W.; et al. Comprehensive assessment of the safety of bisphenol A and its analogs based on multi-toxicity tests in vitro. J. Hazard. Mater. 2025, 486, 136983.

13. Pan, Y.; Xie, R.; Wei, X.; Li, A. J.; Zeng, L. Bisphenol and analogues in indoor dust from E-waste recycling sites, neighboring residential homes, and urban residential homes: implications for human exposure. Sci. Total. Environ. 2024, 907, 168012.

14. Bousoumah, R.; Leso, V.; Iavicoli, I.; et al. Biomonitoring of occupational exposure to bisphenol A, bisphenol S and bisphenol F: a systematic review. Sci. Total. Environ. 2021, 783, 146905.

15. Pathak, R. K.; Jung, D. W.; Shin, S. H.; Ryu, B. Y.; Lee, H. S.; Kim, J. M. Deciphering the mechanisms and interactions of the endocrine disruptor bisphenol A and its analogs with the androgen receptor. J. Hazard. Mater. 2024, 469, 133935.

16. Li, R.; Liu, S.; Qiu, W.; et al. Transcriptomic analysis of bisphenol AF on early growth and development of zebrafish (Danio rerio) larvae. Environ. Sci. Ecotechnol. 2020, 4, 100054.

17. Fan, X.; Guo, J.; Jia, X.; et al. Reproductive toxicity and teratogenicity of fluorene-9-bisphenol on Chinese medaka (Oryzias sinensis): a study from laboratory to field. Environ. Sci. Technol. 2023, 57, 561-9.

18. Lei, B.; Sun, S.; Zhang, X.; et al. Bisphenol AF exerts estrogenic activity in MCF-7 cells through activation of Erk and PI3K/Akt signals via GPER signaling pathway. Chemosphere 2019, 220, 362-70.

19. Stanojević, M.; Sollner Dolenc, M. Mechanisms of bisphenol A and its analogs as endocrine disruptors via nuclear receptors and related signaling pathways. Arch. Toxicol. 2025, 99, 2397-417.

20. Salmaso, V.; Moro, S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview. Front. Pharmacol. 2018, 9, 923.

21. Sousa, S. F.; Ribeiro, A. J. M.; Coimbra, J. T. S.; et al. Protein-ligand docking in the new millennium - a retrospective of 10 years in the field. Curr. Med. Chem. 2013, 20, 2296-314.

22. Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory. Comput. 2015, 11, 3696-713.

23. Sun, Y.; Chen, L.; Zhao, B.; Wang, R. Molecular docking and molecular dynamics simulation decoding molecular mechanism of EDCs binding to hERRγ. J. Mol. Model. 2024, 30, 127.

24. Ikhlas, S.; Usman, A.; Ahmad, M. Comparative study of the interactions between bisphenol-A and its endocrine disrupting analogues with bovine serum albumin using multi-spectroscopic and molecular docking studies. J. Biomol. Struct. Dyn. 2019, 37, 1427-37.

25. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09 Rev. D.01. 2014. https://www.scienceopen.com/document?vid=839f33cc-9114-4a55-8f1a-3f1520324ef5. (accessed 17 Dec 2025).

26. Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06 functionals and 12 other functionals. Theor. Chem. Account. 2008, 119, 525.

27. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009, 113, 6378-96.

28. Morris, G. M.; Huey, R.; Lindstrom, W.; et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785-91.

29. Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. GROMACS: fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701-18.

30. Abraham, M. J.; Murtola, T.; Schulz, R.; et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1-2, 19-25.

31. Li, A.; Daggett, V. Characterization of the transition state of protein unfolding by use of molecular dynamics: chymotrypsin inhibitor 2. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 10430-4.

32. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577-93.

33. Kollman, P. A.; Massova, I.; Reyes, C.; et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 2000, 33, 889-97.

34. Miller, B. R. 3rd.; McGee, T. D. Jr.; Swails, J. M.; Homeyer, N.; Gohlke, H.; Roitberg, A. E. MMPBSA.py: an efficient program for end-state free energy calculations. J. Chem. Theory. Comput. 2012, 8, 3314-21.

35. Valdés-Tresanco, M. S.; Valdés-Tresanco, M. E.; Valiente, P. A.; Moreno, E. gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory. Comput. 2021, 17, 6281-91.

36. Benninghoff, A. D.; Bisson, W. H.; Koch, D. C.; Ehresman, D. J.; Kolluri, S. K.; Williams, D. E. Estrogen-like activity of perfluoroalkyl acids in vivo and interaction with human and rainbow trout estrogen receptors in vitro. Toxicol. Sci. 2011, 120, 42-58.

37. Mu, X.; Huang, Y.; Li, X.; et al. Developmental effects and estrogenicity of bisphenol A alternatives in a zebrafish embryo model. Environ. Sci. Technol. 2018, 52, 3222-31.

38. Ji, B.; Liu, S.; He, X.; Man, V. H.; Xie, X. Q.; Wang, J. Prediction of the binding affinities and selectivity for CB1 and CB2 ligands using homology modeling, molecular docking, molecular dynamics simulations, and MM-PBSA binding free energy calculations. ACS. Chem. Neurosci. 2020, 11, 1139-58.

39. Mansouri, K.; Abdelaziz, A.; Rybacka, A.; et al. CERAPP: collaborative estrogen receptor activity prediction project. Environ. Health. Perspect. 2016, 124, 1023-33.

40. Blair, R. M.; Fang, H.; Branham, W. S.; et al. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol. Sci. 2000, 54, 138-53.

41. Abdulhameed, A. A. R.; Lim, V.; Bahari, H.; et al. Adverse effects of bisphenol A on the liver and its underlying mechanisms: evidence from in vivo and in vitro studies. Biomed. Res. Int. 2022, 2022, 8227314.

42. Das, S.; Mukherjee, U.; Biswas, S.; Banerjee, S.; Karmakar, S.; Maitra, S. Unravelling bisphenol A-induced hepatotoxicity: insights into oxidative stress, inflammation, and energy dysregulation. Environ. Pollut. 2024, 362, 124922.

43. Zhang, L.; Li, Q.; Tang, Y.; et al. Co-exposure to bisphenol a and arsenic enhance hepatotoxicity in zebrafish by targeting the hypothalamic-pituitary-thyroid axis and PPAR pathway. Environ. Pollut. 2025, 384, 127037.

44. Mi, P.; Tang, Y. Q.; Feng, X. Z. Acute fluorene-9-bisphenol exposure damages early development and induces cardiotoxicity in zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2020, 202, 110922.

45. Zhang, S.; Mi, P.; Luan, J.; Sun, M.; Zhao, X.; Feng, X. Fluorene-9-bisphenol acts on the gut-brain axis by regulating oxytocin signaling to disturb social behaviors in zebrafish. Environ. Res. 2024, 255, 119169.

46. Gu, J.; Wang, H.; Zhou, L.; et al. Oxidative stress in bisphenol AF-induced cardiotoxicity in zebrafish and the protective role of N-acetyl N-cysteine. Sci. Total. Environ. 2020, 731, 139190.

47. Scopel, C. F. V.; Sousa, C.; Machado, M. R. F.; Santos, W. G. D. BPA toxicity during development of zebrafish embryo. Braz. J. Biol. 2021, 81, 437-47.

Journal of Environmental Exposure Assessment
ISSN 2771-5949 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/