REFERENCES

1. Aoshima, K. Epidemiology of renal tubular dysfunction in the inhabitants of a cadmium-polluted area in the Jinzu River basin in Toyama prefecture. Tohoku. J. Exp. Med. 1987, 152, 151-72.

2. Cai, Y.; Aoshima, K.; Katoh, T.; Teranishi, H.; Kasuya, M. Renal tubular dysfunction in male inhabitants of a cadmium-polluted area in Toyama, Japan - an eleven-year follow-up study. J. Epidemiol. 2001, 11, 180-9.

3. Sasaki, T.; Horiguchi, H.; Matsukawa, T.; et al. A suspected case of “itai-itai disease” in a cadmium-polluted area in Akita prefecture, Japan. Environ. Health. Prev. Med. 2024, 29, 40.

4. Horiguchi, H.; Oguma, E.; Sasaki, S.; et al. Exposure assessment of cadmium in female farmers in cadmium-polluted areas in northern Japan. Toxics 2020, 8, 44.

5. Verbeeck, M.; Salaets, P.; Smolders, E. Trace element concentrations in mineral phosphate fertilizers used in Europe: a balanced survey. Sci. Total. Environ. 2020, 712, 136419.

6. Zou, M.; Zhou, S.; Zhou, Y.; Jia, Z.; Guo, T.; Wang, J. Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: a review. Environ. Pollut. 2021, 280, 116965.

7. McDowell, R. W.; Gray, C. W. Do soil cadmium concentrations decline after phosphate fertiliser application is stopped: a comparison of long-term pasture trials in New Zealand? Sci. Total. Environ. 2022, 804, 150047.

8. Hou, D.; Jia, X.; Wang, L.; et al. Global soil pollution by toxic metals threatens agriculture and human health. Science 2025, 388, 316-21.

9. Eklund, G.; Tallkvist, J.; Oskarsson, A. A piglet model for studies of gastrointestinal uptake of cadmium in neonates. Toxicol. Lett. 2004, 146, 237-47.

10. Olsson, I. M.; Bensryd, I.; Lundh, T.; Ottosson, H.; Skerfving, S.; Oskarsson, A. Cadmium in blood and urine - impact of sex, age, dietary intake, iron status, and former smoking - association of renal effects. Environ. Health. Perspect. 2002, 110, 1185-90.

11. Vasco, E.; Dias, M. G.; Oliveira, L. The first harmonised total diet study in Portugal: Arsenic, cadmium and lead exposure assessment. Chemosphere 2025, 372, 144003.

12. Cantoral, A.; Collado-López, S.; Betanzos-Robledo, L.; et al. Dietary risk assessment of cadmium exposure through commonly consumed foodstuffs in Mexico. Foods 2024, 13, 3649.

13. Zhu, H.; Tang, X.; Gu, C.; Chen, R.; Liu, Y.; Chu, H.; Zhang, Z. Assessment of human exposure to cadmium and its nephrotoxicity in the Chinese population. Sci. Total. Environ. 2024, 918, 170488.

14. Kolbaum, A. E.; Jung, C.; Jaeger, A.; Libuda, L.; Lindtner, O. Assessment of long-term dietary cadmium exposure in children in Germany: does consideration of data from total diet studies reduce uncertainties from food monitoring programmes? Food. Chem. Toxicol. 2024, 184, 114404.

15. Hill, D. T.; Jandev, V.; Petroni, M.; et al. Airborne levels of cadmium are correlated with urinary cadmium concentrations among young children living in the New York state city of Syracuse, USA. Environ. Res. 2023, 223, 115450.

16. Almerud, P.; Zamaratskaia, G.; Lindroos, A. K.; et al. Cadmium, total mercury, and lead in blood and associations with diet, sociodemographic factors, and smoking in Swedish adolescents. Environ. Res. 2021, 197, 110991.

17. Fagerberg, B.; Barregard, L. Review of cadmium exposure and smoking-independent effects on atherosclerotic cardiovascular disease in the general population. J. Intern. Med. 2021, 290, 1153-79.

18. Kim, J.; Song, H.; Lee, J.; et al. Smoking and passive smoking increases mortality through mediation effect of cadmium exposure in the United States. Sci. Rep. 2023, 13, 3878.

19. Wong, C.; Roberts, S. M.; Saab, I. N. Review of regulatory reference values and background levels for heavy metals in the human diet. Regul. Toxicol. Pharmacol. 2022, 130, 105122.

20. Crump, K. S. A new method for determining allowable daily intakes. Fundam. Appl. Toxicol. 1984, 4, 854-71.

21. Gaylor, D.; Ryan, L.; Krewski, D.; Zhu, Y. Procedures for calculating benchmark doses for health risk assessment. Regul. Toxicol. Pharmacol. 1998, 28, 150-64.

22. Ginsberg, G. L. Cadmium risk assessment in relation to background risk of chronic kidney disease. J. Toxicol. Environ. Health. A. 2012, 75, 374-90.

23. Moffett, D. B., Mumtaz M.M., Sullivan D.W., Jr., Whittaker M.H. Chapter 13, General Considerations of Dose-Effect and Dose-Response Relationships. In: Nordberg G., Costa M., editors. Handbook on the Toxicology of Metals. 5th ed. Cambridge, MA, USA: Academic Press; 2022. pp. 299-317.

24. Codex Alimentarius. Codex general standard for contaminants and toxins in food and feed. 2010. Available from: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.fao.org/fileadmin/user_upload/agns/pdf/CXS_193e.pdf (accessed on 2025-8-15).

25. Nogawa, K.; Sakurai, M.; Ishizaki, M.; Kido, T.; Nakagawa, H.; Suwazono, Y. Threshold limit values of the cadmium concentration in rice in the development of itai-itai disease using benchmark dose analysis. J. Appl. Toxicol. 2017, 37, 962-6.

26. Nishijo, M.; Nogawa, K.; Suwazono, Y.; Kido, T.; Sakurai, M.; Nakagawa, H. Lifetime cadmium exposure and mortality for renal diseases in residents of the cadmium-polluted Kakehashi river basin in Japan. Toxics 2020, 8, 81.

27. Joint FAO/WHO Expert Committee on Food Additives. Safety evaluation of certain food additives and contaminants. In: Joint FAO/WHO Expert Committee on Food Additives and Contaminants, Seventy-Third Meeting: Proceedings of the Joint FAO/WHO Expert Committee on Food Additives and Contaminants, Seventy-Third Meeting; 2010 Jun 8-17; Geneva, Switzerland; Geneva: 2011. Available from: https://apps.who.int/iris/handle/10665/44521 (accessed on 2025-8-15).

28. Murton, M.; Goff-Leggett, D.; Bobrowska, A.; et al. Burden of chronic kidney disease by KDIGO categories of glomerular filtration rate and albuminuria: a systematic review. Adv. Ther. 2021, 38, 180-200.

29. Kalantar-Zadeh, K.; Jafar, T. H.; Nitsch, D.; Neuen, B. L.; Perkovic, V. Chronic kidney disease. Lancet 2021, 398, 786-802.

30. Farrell, D. R.; Vassalotti, J. A. Screening, identifying, and treating chronic kidney disease: why, who, when, how, and what? BMC. Nephrol. 2024, 25, 34.

31. Foreman, K. J.; Marquez, N.; Dolgert, A.; et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet 2018, 392, 2052-90.

32. 2021 Forecasting Collaborators. Burden of disease scenarios for 204 countries and territories, 2022-2050: a forecasting analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2204-56.

33. Satarug, S.; Đorđević, A. B.; Yimthiang, S.; Vesey, D. A.; Gobe, G. C. The NOAEL equivalent of environmental cadmium exposure associated with GFR reduction and chronic kidney disease. Toxics 2022, 10, 614.

34. Feng, X.; Zhou, R.; Jiang, Q.; Wang, Y.; Yu, C. Analysis of cadmium accumulation in community adults and its correlation with low-grade albuminuria. Sci. Total. Environ. 2022, 834, 155210.

35. Grau-Perez, M.; Pichler, G.; Galan-Chilet, I.; et al. Urine cadmium levels and albuminuria in a general population from Spain: a gene-environment interaction analysis. Environ. Int. 2017, 106, 27-36.

36. Satarug, S.; Swaddiwudhipong, W.; Ruangyuttikarn, W.; Nishijo, M.; Ruiz, P. Modeling cadmium exposures in low- and high-exposure areas in Thailand. Environ. Health. Perspect. 2013, 121, 531-6.

37. Xie, S.; Perrais, M.; Golshayan, D.; et al. Association between urinary heavy metal/trace element concentrations and kidney function: a prospective study. Clin. Kidney. J. 2025, 18, sfae378.

38. Shi, Z.; Taylor, A. W.; Riley, M.; Byles, J.; Liu, J.; Noakes, M. Association between dietary patterns, cadmium intake and chronic kidney disease among adults. Clin. Nutr. 2018, 37, 276-84.

39. Cadmium and cadmium compounds. IARC. Monogr. Eval. Carcinog. Risks. Hum. 1993, 58, 119-237.

40. Huff, J.; Lunn, R. M.; Waalkes, M. P.; Tomatis, L.; Infante, P. F. Cadmium-induced cancers in animals and in humans. Int. J. Occup. Environ. Health. 2007, 13, 202-12.

41. Tokar, E. J.; Benbrahim-Tallaa, L.; Waalkes, M. P. Metal ions in human cancer development. Met. Ions. Life. Sci. 2011, 8, 375-401.

42. Waalkes, M. P.; Rehm, S. Chronic toxic and carcinogenic effects of cadmium chloride in male DBA/2NCr and NFS/NCr mice: strain-dependent association with tumors of the hematopoietic system, injection site, liver, and lung. Fundam. Appl. Toxicol. 1994, 23, 21-31.

43. Cirovic, A.; Satarug, S. Toxicity tolerance in the carcinogenesis of environmental cadmium. Int. J. Mol. Sci. 2024, 25, 1851.

44. Kim, Y. J.; Lee, J. Y.; Seomun, G. Whole-blood lead, mercury, and cadmium concentrations and their associations with cancer in Korean elders (2007-2018). Arch. Environ. Occup. Health. 2025, 80, 39-48.

45. Food Safety Authority (EFSA). Cadmium in food - scientific opinion of the panel on contaminants in the food chain. EFSA. J. 2009, 980, 1-139.

46. Food Safety Authority (EFSA). Statement on tolerable weekly intake for cadmium. EFSA. J. 2011, 9, 1975.

47. Qing, Y.; Yang, J.; Zhu, Y.; et al. Dose-response evaluation of urinary cadmium and kidney injury biomarkers in Chinese residents and dietary limit standards. Environ. Health. 2021, 20, 75.

48. Qing, Y.; Yang, J.; Chen, Y.; et al. Urinary cadmium in relation to bone damage: cadmium exposure threshold dose and health-based guidance value estimation. Ecotoxicol. Environ. Saf. 2021, 226, 112824.

49. Leconte, S.; Rousselle, C.; Bodin, L.; Clinard, F.; Carne, G. Refinement of health-based guidance values for cadmium in the French population based on modelling. Toxicol. Lett. 2021, 340, 43-51.

50. Schaefer, H. R.; Flannery, B. M.; Crosby, L. M.; et al. Reassessment of the cadmium toxicological reference value for use in human health assessments of foods. Regul. Toxicol. Pharmacol. 2023, 144, 105487.

51. Pouillot, R.; Farakos, S. S.; Spungen, J.; Schaefer, H. R.; Flannery, B. M.; Van, Doren. J. M. Cadmium physiologically based pharmacokinetic (PBPK) models for forward and reverse dosimetry: Review, evaluation, and adaptation to the U.S. population. Toxicol. Lett. 2022, 367, 67-75.

52. Wu, X.; Wei, S.; Wei, Y.; et al. The reference dose for subchronic exposure of pigs to cadmium leading to early renal damage by benchmark dose method. Toxicol. Sci. 2012, 128, 524-31.

53. Chaumont, A.; De, Winter. F.; Dumont, X.; Haufroid, V.; Bernard, A. The threshold level of urinary cadmium associated with increased urinary excretion of retinol-binding protein and beta 2-microglobulin: a re-assessment in a large cohort of nickel-cadmium battery workers. Occup. Environ. Med. 2011, 68, 257-64.

54. ; Committee for Recommendation of Occupational Exposure Limits, Japan Society for Occupational Health. Occupational exposure limits for acetaldehyde, 2-bromopropane, glyphosate, manganese and inorganic manganese compounds, and zinc oxide nanoparticle, and the biological exposure indices for cadmium and cadmium compounds and ethylbenzene, and carcinogenicity, occupational sensitizer, and reproductive toxicant classifications. J. Occup. Health. 2021, 63, e12294.

55. Nogawa, K.; Suwazono, Y.; Watanabe, Y.; Elinder, C. G. Estimation of benchmark dose of cumulative cadmium exposure for renal tubular effect. Int. J. Environ. Res. Public. Health. 2021, 18, 5177.

56. Hoshino, K.; Iwasawa, S.; Yoshioka, N.; et al. Increased risk of proximal tubular dysfunction due to occupational cadmium exposure: a survival analysis study. J. Occup. Health. 2025, 67.

57. Choi, W. J.; Kang, S. K.; Ham, S.; Chung, W.; Kim, A. J.; Kang, M. Chronic cadmium intoxication and renal injury among workers of a small-scale silver soldering company. Saf. Health. Work. 2020, 11, 235-40.

58. Brzóska, M. M.; Moniuszko-Jakoniuk, J. Disorders in bone metabolism of female rats chronically exposed to cadmium. Toxicol. Appl. Pharmacol. 2005, 202, 68-83.

59. Brzóska, M. M.; Moniuszko-Jakoniuk, J. Bone metabolism of male rats chronically exposed to cadmium. Toxicol. Appl. Pharmacol. 2005, 207, 195-211.

60. Brzóska, M. M.; Moniuszko-Jakoniuk, J. Effect of low-level lifetime exposure to cadmium on calciotropic hormones in aged female rats. Arch. Toxicol. 2005, 79, 636-46.

61. Faroon, O.; Keith, S.; Mumtaz, M.; Ruiz, P. Minimal risk level derivation for cadmium: acute and intermediate duration exposures. J. Exp. Clin. Toxicol. 2017, 1, 1-12.

62. National Toxicology Program. NTP technical report on toxicity studies of cadmium oxide (CAS No. 1306–19-0) Administered by Inhalation to F344/N Rats and B6C3F1 Mice. 1995 Feb. Report No. NIH/PUB--95-3388. U.S. Department of Health and Human Services. National Institutes of Health. National Toxicology Program, Research Triangle Park, NC, USA. Available from: https://www.osti.gov/biblio/121897#:~:text=This%20report%20describes%20toxicity%20studies%20of%20cadmium%20oxide,aerosol%20in%20Sprague-Dawley%20rats%20and%20Swiss%20%28CD-1%29%20mice. (accessed on 2025-8-15).

63. Hardy, A.; Benford, D.; Halldorsson, T.; et al.; EFSA Scientific Committee. Update: use of the benchmark dose approach in risk assessment. EFSA. J. 2017, 15, e04658.

64. Filipsson, A. F.; Sand, S.; Nilsson, J.; Victorin, K. The benchmark dose method - review of available models, and recommendations for application in health risk assessment. Crit. Rev. Toxicol. 2003, 33, 505-42.

65. Slob, W. A general theory of effect size, and its consequences for defining the benchmark response (BMR) for continuous endpoints. Crit. Rev. Toxicol. 2017, 47, 342-51.

66. Sand, S. J.; von, Rosen. D.; Filipsson, A. F. Benchmark calculations in risk assessment using continuous dose-response information: the influence of variance and the determination of a cut-off value. Risk. Anal. 2003, 23, 1059-68.

67. Slob, W.; Moerbeek, M.; Rauniomaa, E.; Piersma, A. H. A statistical evaluation of toxicity study designs for the estimation of the benchmark dose in continuous endpoints. Toxicol. Sci. 2005, 84, 167-85.

68. Sand, S.; Filipsson, A. F.; Victorin, K. Evaluation of the benchmark dose method for dichotomous data: model dependence and model selection. Regul. Toxicol. Pharmacol. 2002, 36, 184-97.

69. Slob, W.; Setzer, R. W. Shape and steepness of toxicological dose-response relationships of continuous endpoints. Crit. Rev. Toxicol. 2014, 44, 270-97.

70. Zhu, Y.; Wang, T.; Jelsovsky, J. Z. Bootstrap estimation of benchmark doses and confidence limits with clustered quantal data. Risk. Anal. 2007, 27, 447-65.

71. Woo, H. D.; Chiu, W. A.; Jo, S.; Kim, J. Benchmark dose for urinary cadmium based on a marker of renal dysfunction: a meta-analysis. PLoS. One. 2015, 10, e0126680.

72. Wang, X.; Wang, Y.; Feng, L.; et al. Application of the benchmark dose (BMD) method to identify thresholds of cadmium-induced renal effects in non-polluted areas in China. PLoS. One. 2016, 11, e0161240.

73. Suwazono, Y.; Sand, S.; Vahter, M.; et al. Benchmark dose for cadmium-induced renal effects in humans. Environ. Health. Perspect. 2006, 114, 1072-6.

74. Hayashi, T.; Nogawa, K.; Watanabe, Y.; et al. Benchmark dose of urinary cadmium for assessing renal tubular and glomerular function in a cadmium-polluted area of Japan. Toxics 2024, 12, 836.

75. Satarug, S.; Vesey, D. A.; Gobe, G. C.; Đorđević, A. B. The Validity of Benchmark dose limit analysis for estimating permissible accumulation of cadmium. Int. J. Environ. Res. Public. Health. 2022, 19, 15697.

76. Satarug, S.; Vesey, D. A.; Đorđević, A. B. The NOAEL equivalent for the cumulative body burden of cadmium: focus on proteinuria as an endpoint. J. Environ. Expo. Assess. 2024, 3, 26.

77. Liu, C.; Li, Y.; Zhu, C.; et al. Benchmark dose for cadmium exposure and elevated N-acetyl-β-D-glucosaminidase: a meta-analysis. Environ. Sci. Pollut. Res. Int. 2016, 23, 20528-38.

78. Thomas, L. D.; Hodgson, S.; Nieuwenhuijsen, M.; Jarup, L. Early kidney damage in a population exposed to cadmium and other heavy metals. Environ. Health. Perspect. 2009, 117, 181-4.

79. Kunioka, C. T.; Manso, M. C.; Carvalho, M. Association between environmental cadmium exposure and osteoporosis risk in postmenopausal women: a systematic review and meta-analysis. Int. J. Environ. Res. Public. Health. 2022, 20, 485.

80. Wallin, M.; Sallsten, G.; Lundh, T.; Barregard, L. Low-level cadmium exposure and effects on kidney function. Occup. Environ. Med. 2014, 71, 848-54.

81. Phelps, K. R.; Yimthiang, S.; Pouyfung, P.; Khamphaya, T.; Vesey, D. A.; Satarug, S. Homeostasis of β2-Microglobulin in diabetics and non-diabetics with modest cadmium intoxication. Version: 1 ScieRxiv [Preprints] 2025 [Received: 20 Feb 2025; Approved: 20 Feb 2025; Cited 15 Aug 2025] [35 p.].

82. Đorđević, A. B.; Vesey, D. A.; Satarug, S. Cadmium-induced nephrotoxicity assessed by benchmark dose calculations in two exposure-effect datasets. 10.21203/rs.3.rs-6799604/v1.

83. Makhammajanov, Z.; Gaipov, A.; Myngbay, A.; Bukasov, R.; Aljofan, M.; Kanbay, M. Tubular toxicity of proteinuria and the progression of chronic kidney disease. Nephrol. Dial. Transplant. 2024, 39, 589-99.

84. Faivre, A.; Verissimo, T.; de, Seigneux. S. Proteinuria and tubular cells: plasticity and toxicity. Acta. Physiol. (Oxf). 2025, 241, e14263.

85. Liu, D.; Lv, L. New Understanding on the role of proteinuria in progression of chronic kidney disease. In: Liu B, Lan H, Lv L, editors. Renal Fibrosis: Mechanisms and Therapies. Singapore: Springer; 2019. pp. 487-500.

86. Schneider, S. N.; Liu, Z.; Wang, B.; et al. Oral cadmium in mice carrying 5 versus 2 copies of the Slc39a8 gene: comparison of uptake, distribution, metal content, and toxicity. Int. J. Toxicol. 2014, 33, 14-20.

87. Fujishiro, H.; Himeno, S. New insights into the roles of ZIP8, a cadmium and manganese transporter, and its relation to human diseases. Biol. Pharm. Bull. 2019, 42, 1076-82.

88. Thévenod, F.; Fels, J.; Lee, W. K.; Zarbock, R. Channels, transporters and receptors for cadmium and cadmium complexes in eukaryotic cells: myths and facts. Biometals 2019, 32, 469-89.

89. Ohta, H.; Ohba, K. Involvement of metal transporters in the intestinal uptake of cadmium. J. Toxicol. Sci. 2020, 45, 539-48.

90. Fujita, Y.; el, Belbasi. H. I.; Min, K. S.; Onosaka, S.; Okada, Y.; Matsumoto, Y.; Mutoh, N.; Tanaka, K. Fate of cadmium bound to phytochelatin in rats. Res. Commun. Chem. Pathol. Pharmacol. 1993, 82, 357-65.

91. Langelueddecke, C.; Roussa, E.; Fenton, R. A.; Thévenod, F. Expression and function of the lipocalin-2 (24p3/NGAL) receptor in rodent and human intestinal epithelia. PLoS. One. 2013, 8, e71586.

92. Langelueddecke, C.; Lee, W. K.; Thévenod, F. Differential transcytosis and toxicity of the hNGAL receptor ligands cadmium-metallothionein and cadmium-phytochelatin in colon-like Caco-2 cells: implications for in vivo cadmium toxicity. Toxicol. Lett. 2014, 226, 228-35.

93. Kikuchi, Y.; Nomiyama, T.; Kumagai, N.; et al. Uptake of cadmium in meals from the digestive tract of young non-smoking Japanese female volunteers. J. Occup. Health. 2003, 45, 43-52.

94. Horiguchi, H.; Oguma, E.; Sasaki, S.; et al. Comprehensive study of the effects of age, iron deficiency, diabetes mellitus, and cadmium burden on dietary cadmium absorption in cadmium-exposed female Japanese farmers. Toxicol. Appl. Pharmacol. 2004, 196, 114-23.

95. Julin, B.; Vahter, M.; Amzal, B.; Wolk, A.; Berglund, M.; Åkesson, A. Relation between dietary cadmium intake and biomarkers of cadmium exposure in premenopausal women accounting for body iron stores. Environ. Health. 2011, 10, 105.

96. Elinder, C. G.; Lind, B.; Kjellström, T.; Linnman, L.; Friberg, L. Cadmium in kidney cortex, liver, and pancreas from Swedish autopsies. Estimation of biological half time in kidney cortex, considering calorie intake and smoking habits. Arch. Environ. Health. 1976, 31, 292-302.

97. Elinder, C. G.; Kjellstöm, T.; Lind, B.; Molander, M. L.; Silander, T. Cadmium concentrations in human liver, blood, and bile: comparison with a metabolic model. Environ. Res. 1978, 17, 236-41.

98. Qing, Y.; Li, Y.; Cai, X.; He, W.; Liu, S.; Ji, Y.; Jiang, M.; Yang, L.; Wang, J.; Ping, S.; Chen, Y.; Luo, Y.; Li, Y. Assessment of cadmium concentrations in foodstuffs and dietary exposure risk across China: a metadata analysis. Expo. Health. 2023, 15, 951-61.

99. Callan, A.; Hinwood, A.; Devine, A. Metals in commonly eaten groceries in Western Australia: a market basket survey and dietary assessment. Food. Addit. Contam. Part. A. Chem. Anal. Control. Expo. Risk. Assess. 2014, 31, 1968-81.

100. Satarug, S.; Baker, J. R.; Reilly, P. E.; Moore, M. R.; Williams, D. J. Cadmium levels in the lung, liver, kidney cortex, and urine samples from Australians without occupational exposure to metals. Arch. Environ. Health. 2002, 57, 69-77.

101. Akerstrom, M.; Barregard, L.; Lundh, T.; Sallsten, G. The relationship between cadmium in kidney and cadmium in urine and blood in an environmentally exposed population. Toxicol. Appl. Pharmacol. 2013, 268, 286-93.

102. Barregard, L.; Fabricius-Lagging, E.; Lundh, T.; et al. Cadmium, mercury, and lead in kidney cortex of living kidney donors: Impact of different exposure sources. Environ. Res. 2010, 110, 47-54.

103. Sand, S.; Becker, W. Assessment of dietary cadmium exposure in Sweden and population health concern including scenario analysis. Food. Chem. Toxicol. 2012, 50, 536-44.

104. Barregard, L.; Sallsten, G.; Lundh, T.; Mölne, J. Low-level exposure to lead, cadmium and mercury, and histopathological findings in kidney biopsies. Environ. Res. 2022, 211, 113119.

105. Lenoir, O.; Tharaux, P. L.; Huber, T. B. Autophagy in kidney disease and aging: lessons from rodent models. Kidney. Int. 2016, 90, 950-64.

106. Fujiwara, Y.; Lee, J. Y.; Tokumoto, M.; Satoh, M. Cadmium renal toxicity via apoptotic pathways. Biol. Pharm. Bull. 2012, 35, 1892-7.

107. Thévenod, F.; Lee, W. K.; Garrick, M. D. Iron and cadmium entry into renal mitochondria: physiological and toxicological implications. Front. Cell. Dev. Biol. 2020, 8, 848.

108. Dong, P. F.; Liu, T. B.; Chen, K.; et al. Cadmium targeting transcription factor EB to inhibit autophagy-lysosome function contributes to acute kidney injury. J. Adv. Res. 2025, 72, 653-69.

109. Lv, Y. T.; Liu, T. B.; Li, Y.; Wang, Z. Y.; Lian, C. Y.; Wang, L. HO-1 activation contributes to cadmium-induced ferroptosis in renal tubular epithelial cells via increasing the labile iron pool and promoting mitochondrial ROS generation. Chem. Biol. Interact. 2024, 399, 111152.

110. Ning, B.; Guo, C.; Kong, A.; et al. Calcium signaling mediates cell death and crosstalk with autophagy in kidney disease. Cells 2021, 10, 3204.

111. Li, K.; Guo, C.; Ruan, J.; et al. Cadmium disrupted ER Ca2+ homeostasis by inhibiting SERCA2 expression and activity to induce apoptosis in renal proximal tubular cells. Int. J. Mol. Sci. 2023, 24, 5979.

112. Liu, F.; Li, Z. F.; Wang, Z. Y.; Wang, L. Role of subcellular calcium redistribution in regulating apoptosis and autophagy in cadmium-exposed primary rat proximal tubular cells. J. Inorg. Biochem. 2016, 164, 99-109.

113. Lang, S. M.; Schiffl, H. Smoking status, cadmium, and chronic kidney disease. Ren. Replace. Ther. 2024, 10, 17.

114. Grandjean, P.; Budtz-Jørgensen, E. Total imprecision of exposure biomarkers: implications for calculating exposure limits. Am. J. Ind. Med. 2007, 50, 712-9.

115. Byber, K.; Lison, D.; Verougstraete, V.; Dressel, H.; Hotz, P. Cadmium or cadmium compounds and chronic kidney disease in workers and the general population: a systematic review. Crit. Rev. Toxicol. 2016, 46, 191-240.

116. Jalili, C.; Kazemi, M.; Cheng, H.; et al. Associations between exposure to heavy metals and the risk of chronic kidney disease: a systematic review and meta-analysis. Crit. Rev. Toxicol. 2021, 51, 165-82.

117. Doccioli, C.; Sera, F.; Francavilla, A.; Cupisti, A.; Biggeri, A. Association of cadmium environmental exposure with chronic kidney disease: a systematic review and meta-analysis. Sci. Total. Environ. 2024, 906, 167165.

118. Johri, N.; Jacquillet, G.; Unwin, R. Heavy metal poisoning: the effects of cadmium on the kidney. Biometals 2010, 23, 783-92.

119. Phelps, K. R.; Gosmanova, E. O. A generic method for analysis of plasma concentrations
. Clin. Nephrol. 2020, 94, 43-49.

120. Argyropoulos, C. P.; Chen, S. S.; Ng, Y. H.; et al. Rediscovering beta-2 microglobulin as a biomarker across the spectrum of kidney diseases. Front. Med. (Lausanne). 2017, 4, 73.

121. Sivanathan, P. C.; Ooi, K. S.; Mohammad, Haniff. M. A. S.; et al. Lifting the veil: characteristics, clinical significance, and application of β-2-microglobulin as biomarkers and its detection with biosensors. ACS. Biomater. Sci. Eng. 2022, 8, 3142-61.

122. Molitoris, B. A.; Sandoval, R. M.; Yadav, S. P. S.; Wagner, M. C. Albumin uptake and processing by the proximal tubule: physiological, pathological, and therapeutic implications. Physiol. Rev. 2022, 102, 1625-67.

123. Comper, W. D.; Vuchkova, J.; McCarthy, K. J. New insights into proteinuria/albuminuria. Front. Physiol. 2022, 13, 991756.

124. Benzing, T.; Salant, D. Insights into glomerular filtration and albuminuria. N. Engl. J. Med. 2021, 384, 1437-46.

125. Satarug, S.; Vesey, D. A.; Gobe, G. C.; Phelps, K. R. The pathogenesis of albuminuria in cadmium nephropathy. Curr. Res. Toxicol. 2024, 6, 100140.

126. Satarug, S.; Vesey, D. A.; Gobe, G. C.; Yimthiang, S.; Buha, Đorđević. A. Health risk in a geographic area of Thailand with endemic cadmium contamination: focus on albuminuria. Toxics 2023, 11, 68.

127. Shi, P.; Yan, H.; Fan, X.; Xi, S. A benchmark dose analysis for urinary cadmium and type 2 diabetes mellitus. Environ. Pollut. 2021, 273, 116519.

128. Schwartz, G. G.; Il'yasova, D.; Ivanova, A. Urinary cadmium, impaired fasting glucose, and diabetes in the NHANES III. Diabetes. Care. 2003, 26, 468-70.

129. Jiang, F.; Zhi, X.; Xu, M.; Li, B.; Zhang, Z. Gender-specific differences of interaction between cadmium exposure and obesity on prediabetes in the NHANES 2007-2012 population. Endocrine 2018, 61, 258-66.

130. Wallia, A.; Allen, N. B.; Badon, S.; El, Muayed. M. Association between urinary cadmium levels and prediabetes in the NHANES 2005-2010 population. Int. J. Hyg. Environ. Health. 2014, 217, 854-60.

131. Hagedoorn, I. J. M.; Gant, C. M.; Huizen, S. V.; et al. Lifestyle-related exposure to cadmium and lead is associated with diabetic kidney disease. J. Clin. Med. 2020, 9, 2432.

132. Oosterwijk, M. M.; Hagedoorn, I. J. M.; Maatman, R. G. H. J.; Bakker, S. J. L.; Navis, G.; Laverman, G. D. Cadmium, active smoking and renal function deterioration in patients with type 2 diabetes. Nephrol. Dial. Transplant. 2023, 38, 876-83.

133. Okubo, A.; Nakashima, A.; Doi, S.; et al. High-normal albuminuria is strongly associated with incident chronic kidney disease in a nondiabetic population with normal range of albuminuria and normal kidney function. Clin. Exp. Nephrol. 2020, 24, 435-43.

134. Lin, X.; Song, W.; Zhou, Y.; et al. Elevated urine albumin creatinine ratio increases cardiovascular mortality in coronary artery disease patients with or without type 2 diabetes mellitus: a multicenter retrospective study. Cardiovasc. Diabetol. 2023, 22, 203.

Journal of Environmental Exposure Assessment
ISSN 2771-5949 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/