REFERENCES
1. Li, Y.; Wang, Y.; Wang, X.; et al. Linear range enhancement in flexible piezoresistive sensors enabled by double-layer corrugated structure. Adv. Funct. Mater. 2025, e13480.
2. Gao, L.; Zhu, C.; Li, L.; et al. All paper-based flexible and wearable piezoresistive pressure sensor. ACS. Appl. Mater. Interfaces. 2019, 11, 25034-42.
3. Li, Y.; Wang, X.; Wang, Y.; et al. Ultrawide sensing range and high-sensitivity capacitive pressure sensor based on skeleton dilution strategies for human motion and correction of poor body posture. IEEE. Sensors. J. 2024, 24, 11270-8.
4. Han, R.; Liu, Y.; Mo, Y.; et al. High anti-jamming flexible capacitive pressure sensors based on core-shell structured AgNWs@TiO2. Adv. Funct. Mater. 2023, 33, 2305531.
5. Cheng, T.; Shao, J.; Wang, Z. L. Triboelectric nanogenerators. Nat. Rev. Methods. Primers. 2023, 3, 39.
6. Niu, S.; Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano. Energy. 2015, 14, 161-92.
7. Chen, Z.; Wang, Z.; Li, X.; et al. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS. Nano. 2017, 11, 4507-13.
8. Jung, Y. H.; Hong, S. K.; Wang, H. S.; et al. Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater. 2020, 32, e1904020.
9. Qiu, Z.; Wan, Y.; Zhou, W.; et al. Ionic skin with biomimetic dielectric layer templated from Calathea Zebrine leaf. Adv. Funct. Mater. 2018, 28, 1802343.
10. Bai, N.; Wang, L.; Wang, Q.; et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 2020, 11, 209.
11. Zhao, C.; Wang, Y.; Tang, G.; et al. Ionic flexible sensors: mechanisms, materials, structures, and applications. Adv. Funct. Mater. 2022, 32, 2110417.
12. Huang, Y.; Fan, X.; Chen, S. C.; Zhao, N. Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing. Adv. Funct. Mater. 2019, 29, 1808509.
13. Mishra, R. B.; El‐atab, N.; Hussain, A. M.; Hussain, M. M. Recent progress on flexible capacitive pressure sensors: from design and materials to applications. Adv. Mater. Technol. 2021, 6, 2001023.
14. Wang, J.; Chen, Y.; Tu, S.; Cui, X.; Chen, J.; Zhu, Y. Recent advances in flexible iontronic pressure sensors: materials, microstructure designs, applications, and opportunities. J. Mater. Chem. C. 2024, 12, 14202-21.
15. Li, Y.; Bai, N.; Chang, Y.; et al. Flexible iontronic sensing. Chem. Soc. Rev. 2025, 54, 4651-700.
16. Nie, B.; Xing, S.; Brandt, J. D.; Pan, T. Droplet-based interfacial capacitive sensing. Lab. Chip. 2012, 12, 1110-8.
17. Zhuo, F.; Ding, Z.; Yang, X.; et al. Advanced morphological and material engineering for high-performance interfacial iontronic pressure sensors. Adv. Sci. (Weinh). 2025, 12, e2413141.
18. Shi, J.; Dai, Y.; Cheng, Y.; et al. Embedment of sensing elements for robust, highly sensitive, and cross-talk-free iontronic skins for robotics applications. Sci. Adv. 2023, 9, eadf8831.
19. Bai, N.; Wang, L.; Xue, Y.; et al. Graded interlocks for iontronic pressure sensors with high sensitivity and high linearity over a broad range. ACS. Nano. 2022, 16, 4338-47.
20. Zhang, Y.; Yang, J.; Hou, X.; et al. Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nat. Commun. 2022, 13, 1317.
21. Wang, J.; Wei, X.; Shi, J.; et al. High-resolution flexible iontronic skins for both negative and positive pressure measurement in room temperature wind tunnel applications. Nat. Commun. 2024, 15, 7094.
22. Lu, P.; Wang, L.; Zhu, P.; et al. Iontronic pressure sensor with high sensitivity and linear response over a wide pressure range based on soft micropillared electrodes. Sci. Bull. (Beijing). 2021, 66, 1091-100.
23. Bai, N.; Xue, Y.; Chen, S.; et al. A robotic sensory system with high spatiotemporal resolution for texture recognition. Nat. Commun. 2023, 14, 7121.
24. Guo, H.; Bai, M.; Wen, C.; et al. A zwitterionic-aromatic motif-based ionic skin for highly biocompatible and glucose-responsive sensor. J. Colloid. Interface. Sci. 2021, 600, 561-71.
25. He, Y.; Cheng, Y.; Yang, C.; Guo, C. F. Creep-free polyelectrolyte elastomer for drift-free iontronic sensing. Nat. Mater. 2024, 23, 1107-14.
26. Wang, H. L.; Chen, T.; Zhang, B.; et al. A dual-responsive artificial skin for tactile and touchless interfaces. Small 2023, 19, e2206830.
27. Li, Q.; Liu, Z.; Zheng, S.; et al. Three-dimensional printable, highly conductive ionic elastomers for high-sensitivity iontronics. ACS. Appl. Mater. Interfaces. 2022, 14, 26068-76.
28. Chang, Y.; Wang, L.; Li, R.; et al. First decade of interfacial iontronic sensing: from droplet sensors to artificial skins. Adv. Mater. 2021, 33, e2003464.
29. Zhao, Y.; Wang, T.; Zhao, Z.; Wang, Q. Track-etch membranes as tools for template synthesis of highly sensitive pressure sensors. ACS. Appl. Mater. Interfaces. 2022, 14, 1791-9.
30. Yang, Z.; Wang, J.; Wan, X.; et al. Microbubble-based fabrication of resilient porous ionogels for high-sensitivity pressure sensors. Microsyst. Nanoeng. 2024, 10, 177.
31. Choi, K.; Lee, G.; Lee, M. G.; Hwang, H. J.; Lee, K.; Lee, Y. Bio-inspired ionic sensors: transforming natural mechanisms into sensory technologies. Nanomicro. Lett. 2025, 17, 180.
32. Ro, Y. G.; Na, S.; Kim, J.; et al. Iontronics: Neuromorphic sensing and energy harvesting. ACS. Nano. 2025, 19, 24425-507.
33. Lee, G.; Lee, D.; Im, G. B.; Lee, Y. A review on soft ionic touch point sensors. Energy. &. Environ. Mater. 2024, 7, e12794.
34. Zhao, Y.; Yang, N.; Chu, X.; et al. Wide-humidity range applicable, anti-freezing, and healable zwitterionic hydrogels for ion-leakage-free iontronic sensors. Adv. Mater. 2023, 35, e2211617.
35. Chang, K.; Zhang, C.; Liu, T. A comprehensive review on fabrication and structural design of polymer composites for wearable pressure sensors. Polym. Sci. Technol. 2025, 1, 3-24.
36. Gao, N.; Pan, C. Intelligent ion gels: design, performance, and applications. SmartMat 2023, 5, e1215.
37. Chen, Z.; Wang, Y. Ionic skin: from imitating natural skin to beyond. Ind. Chem. Mater. 2023, 1, 224-39.
38. Huang, F.; Sun, X.; Shi, Y.; Pan, L. Flexible ionic-gel synapse devices and their applications in neuromorphic system. FlexMat 2024, 2, 30-54.
39. Gao, J.; Zeb, A.; Li, H.; et al. Poly(ionic liquid)s-based ionogels for sensor applications. ACS. Appl. Polym. Mater. 2024, 6, 14260-72.
40. Wen, J.; Zhou, L.; Ye, T. Polymer ionogels and their application in flexible ionic devices. SmartMat 2024, 5, e1253.
41. Choi, S. G.; Kang, S. H.; Lee, J. Y.; Park, J. H.; Kang, S. K. Recent advances in wearable iontronic sensors for healthcare applications. Front. Bioeng. Biotechnol. 2023, 11, 1335188.
42. Li, R.; Zhou, Q.; Bi, Y.; et al. Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches. Sens. Actuators. A. Phys. 2021, 321, 112425.
43. GRAHAME, D. C. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 1947, 41, 441-501.
44. Li, C.; Cheng, J.; He, Y.; et al. Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing. Nat. Commun. 2023, 14, 4853.
45. Choi, N. S.; Chen, Z.; Freunberger, S. A.; et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. Engl. 2012, 51, 9994-10024.
46. Gouy, M. Sur la constitution de la charge électrique à la surface d'un électrolyte. J. Phys. Theor. Appl. 1910, 9, 457-68.
47. Chapman, D. L. LI.A contribution to the theory of electrocapillarity. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 2010, 25, 475-81.
48. Parsons, R. The electrical double layer: recent experimental and theoretical developments. Chem. Rev. 2002, 90, 813-26.
49. Torrie, G. M.; Valleau, J. P. Electrical double layers. I. Monte Carlo study of a uniformly charged surface. J. Chem. Phys. 1980, 73, 5807-16.
50. Carnie, S. L.; Chan, D. Y. C. The statistical mechanics of the electrical double layer: Stress tensor and contact conditions. J. Chem. Phys. 1981, 74, 1293-7.
51. Heikenfeld, J.; Jajack, A.; Rogers, J.; et al. Wearable sensors: modalities, challenges, and prospects. Lab. Chip. 2018, 18, 217-48.
52. Zhang, Y.; Rajamani, R.; Sezen, S. Novel supercapacitor-based force sensor insensitive to parasitic noise. IEEE. Sens. Lett. 2017, 1.
53. Greenwood, J. A.; Williamson, J. B. P. Contact of nominally flat surfaces. Proc. R. Soc. Lond. A. Math. Phys. Sci. 1966, 295, 300-19.
55. Mannsfeld, S. C.; Tee, B. C.; Stoltenberg, R. M.; et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859-64.
56. Nie, B.; Li, R.; Brandt, J. D.; Pan, T. Iontronic microdroplet array for flexible ultrasensitive tactile sensing. Lab. Chip. 2014, 14, 1107-16.
57. Wang, X.; Li, Y.; Wang, Y.; et al. Fabrication method and various application scenarios of flexible capacitive pressure sensor based on direct formation of conical structure. Chem. Eng. J. 2024, 496, 153957.
58. Tang, Y.; Wang, P.; Li, G.; et al. Flexible and ultra-sensitive planar supercapacitive pressure sensor based on porous ionic foam. Adv. Eng. Mater. 2022, 25, 2200814.
59. Liu, Q.; Liu, Y.; Shi, J.; Liu, Z.; Wang, Q.; Guo, C. F. High-porosity foam-based iontronic pressure sensor with superhigh sensitivity of 9280 kPa-1. Nanomicro. Lett. 2021, 14, 21.
60. Xu, R.; She, M.; Liu, J.; et al. Breathable kirigami-shaped ionotronic e-textile with touch/strain sensing for friendly epidermal electronics. Adv. Fiber. Mater. 2022, 4, 1525-34.
61. Wang, Z.; Si, Y.; Zhao, C.; Yu, D.; Wang, W.; Sun, G. Flexible and washable poly(ionic liquid) nanofibrous membrane with moisture proof pressure sensing for real-life wearable electronics. ACS. Appl. Mater. Interfaces. 2019, 11, 27200-9.
62. Gou, X.; Yang, J.; Li, P.; et al. Biomimetic nanofiber-iongel composites for flexible pressure sensors with broad range and ultra-high sensitivity. Nano. Energy. 2024, 120, 109140.
63. Niu, H.; Li, H.; Zhang, Q.; Kim, E. S.; Kim, N. Y.; Li, Y. Intuition-and-tactile bimodal sensing based on artificial-intelligence-motivated all-fabric bionic electronic skin for intelligent material perception. Small 2024, 20, e2308127.
64. Zhang, J.; Wang, H.; Tian, W.; Li, D.; Zhang, J.; Song, Y. Compressive sponge electrodes enabled highly sensitive hybrid-iontronic pressure sensor. ACS. Appl. Mater. Interfaces. 2025, 17, 38635-47.
65. Luo, Y.; Chen, X.; Tian, H.; et al. Gecko-inspired slant hierarchical microstructure-based ultrasensitive iontronic pressure sensor for intelligent interaction. Research. (Wash. D. C). 2022, 2022, 9852138.
66. Chen, Z.; Zhang, Y.; Zhu, B.; et al. Laser-sculptured hierarchical spinous structures for ultra-high-sensitivity iontronic sensors with a broad operation range. ACS. Appl. Mater. Interfaces. 2022, 14, 19672-82.
67. Huang, Y.; Hu, S.; Li, Y.; et al. Programmable high-sensitivity iontronic pressure sensors support broad human-interactive perception and identification. npj. Flex. Electron. 2025, 9, 41.
68. Yuan, Y. M.; Liu, B.; Adibeig, M. R.; et al. Microstructured polyelectrolyte elastomer-based ionotronic sensors with high sensitivities and excellent stability for artificial skins. Adv. Mater. 2024, 36, e2310429.
69. Guo, Y.; Li, H.; Li, Y.; et al. Wearable hybrid device capable of interactive perception with pressure sensing and visualization. Adv. Funct. Mater. 2022, 32, 2203585.
70. Ding, Z.; Li, W.; Wang, W.; et al. Highly sensitive iontronic pressure sensor with side-by-side package based on alveoli and arch structure. Adv. Sci. (Weinh). 2024, 11, e2309407.
71. Qin, Y.; Wang, X.; Gao, B. Ionic Capacitive pressure sensor with enhanced sensitivity and broad detection range featuring hierarchical microridge design. ACS. Appl. Electron. Mater. 2025, 7, 2494-503.
72. Chen, H.; Shi, J.; Ji, C.; Fan, W.; Sui, K. Facile multiple graded wrinkle construction strategy for vastly boosting the sensing performance of ionic skins. ACS. Appl. Mater. Interfaces. 2024, 16, 25462-72.
73. Peng, W.; Zhao, J.; Li, Q.; et al. A strong and tough ion-gel enabled by hierarchical meshing and ion hybridizations collaboration. Adv. Funct. Mater. 2024, 35, 2414682.
74. Lan, R.; Zhang, J.; Chen, J.; et al. High-sensitivity flexible capacitive pressure sensors based on biomimetic hibiscus flower microstructures. ACS. Omega. 2024, 9, 13704-13.
75. Liu, Y.; Wang, J.; Chen, J.; Yuan, Q.; Zhu, Y. Ultrasensitive iontronic pressure sensor based on rose-structured ionogel dielectric layer and compressively porous electrodes. Adv. Compos. Hybrid. Mater. 2023, 6, 210.
76. Burns, D. W. Mems wet-etch processes and procedures. In: Ghodssi, R., Lin, P. Editors. Mems materials and processes handbook, Boston, MA: Springer: 2011; pp 457-665.
77. Pal, P.; Sato, K. Fabrication methods based on wet etching process for the realization of silicon MEMS structures with new shapes. Microsyst. Technol. 2010, 16, 1165-74.
78. Zou, Q.; Lei, Z.; Xue, T.; Li, S.; Ma, Z.; Su, Q. Highly sensitive flexible pressure sensor based on ionic dielectric layer with hierarchical ridge microstructure. Sens. Actuators. A. Phys. 2020, 313, 112218.
79. Chen, Y.; Qin, Y.; Zhang, X.; Zheng, A.; Xia, Q. Hierarchical arete architecture-enabled iontronic pressure sensor with high linearity and sensitivity. Adv. Mater. Technol. 2022, 7, 2200322.
80. Yoon, H.; Ko, S.; Chhetry, A.; et al. Ultra-sensitive and quick-responsive hybrid-supercapacitive iontronic pressure sensor for intuitive electronics and artificial tactile applications. Adv. Mater. Technol. 2022, 7, 2101743.
81. Song, J.; Yang, R.; Shi, J.; et al. Polyelectrolyte-based wireless and drift-free iontronic sensors for orthodontic sensing. Sci. Adv. 2025, 11, eadu6086.
82. Zou, Q.; Li, S.; Xue, T.; Ma, Z.; Lei, Z.; Su, Q. Highly sensitive ionic pressure sensor with broad sensing range based on interlaced ridge-like microstructure. Sens. Actuators. A. Phys. 2020, 313, 112173.
83. Li, G.; Qiu, Z.; Wang, Y.; et al. PEDOT:PSS/Grafted-PDMS electrodes for fully organic and intrinsically stretchable skin-like electronics. ACS. Appl. Mater. Interfaces. 2019, 11, 10373-9.
84. Kwon, J. H.; Kim, Y. M.; Moon, H. C. Porous Ion Gel: A versatile ionotronic sensory platform for high-performance, wearable ionoskins with electrical and optical dual output. ACS. Nano. 2021, 15, 15132-41.
85. Tian, H.; Jiang, Y.; Song, Y.; et al. Hierarchical synergetic strategy for iontronic pressure sensors with high sensitivity and broad linearity range. ACS. Sens. 2025, 10, 2030-7.
86. Sun, G.; Wang, P.; Jiang, Y.; Sun, H.; Meng, C. Intrinsically flexible and breathable supercapacitive pressure sensor based on MXene and ionic gel decorating textiles for comfortable and ultrasensitive wearable healthcare monitoring. ACS. Appl. Electron. Mater. 2022, 4, 1958-67.
87. Hilário, J.; Macucule, B. M.; Wang, P.; Yu, W.; Meng, C. Flexible iontronic tactile sensors based on silver nanowire electrode with sandpaper-roughened surface and ionic liquid gel electrolyte with porous foam structure for wearable sensing applications. ACS. Appl. Electron. Mater. 2024, 6, 4457-66.
88. Li, P.; Zhang, Y.; Zhou, Y.; et al. Epidermis inspired self-assembled iontronic foam with high sensitivity and broad range. Nano. Mater. Sci. 2025, 7, 383-91.
89. Liu, Q.; Liu, Z.; Li, C.; et al. Highly transparent and flexible iontronic pressure sensors based on an opaque to transparent transition. Adv. Sci. (Weinh). 2020, 7, 2000348.
90. Li, B.; Luo, Z.; Gong, L.; et al. Stretchable iontronic tactile sensing fabric. ACS. Appl. Mater. Interfaces. 2024, 16, 42905-16.
91. Sun, G.; Wang, P.; Jiang, Y.; et al. Bioinspired flexible, breathable, waterproof and self-cleaning iontronic tactile sensors for special underwater sensing applications. Nano. Energy. 2023, 110, 108367.
92. Yang, W.; Yang, C.; Jing, G.; et al. Preparation of polymer composites with electrostatic spinning promotes wound regeneration: a review. AIP. Advances. 2024, 14, 090701.
93. Lin, X.; Xue, H.; Li, F.; Mei, H.; Zhao, H.; Zhang, T. All-nanofibrous ionic capacitive pressure sensor for wearable applications. ACS. Appl. Mater. Interfaces. 2022, 14, 31385-95.
94. Wang, P.; Li, G.; Yu, W.; Meng, C.; Guo, S. Flexible pseudocapacitive iontronic tactile sensor based on microsphere-decorated electrode and microporous polymer electrolyte for ultrasensitive pressure detection. Adv. Elect. Mater. 2022, 8, 2101269.
95. Yang, Z.; Duan, Q.; Zang, J.; et al. Boron nitride-enabled printing of a highly sensitive and flexible iontronic pressure sensing system for spatial mapping. Microsyst. Nanoeng. 2023, 9, 68.
96. Wang, X.; Wu, G.; Zhang, X.; et al. Traditional Chinese medicine (TCM)-inspired fully printed soft pressure sensor array with self-adaptive pressurization for highly reliable individualized long-term pulse diagnostics. Adv. Mater. 2025, 37, e2410312.
97. Guan, T.; Li, H.; Liu, J.; et al. Preparation of ion composite photosensitive resin and its application in 3D-printing highly sensitive pressure sensor. Sensors. (Basel). 2025, 25, 1348.
98. Zheng, X.; Li, Y.; Zhou, Q.; et al. Biocompatible, biodegradable, and high-performance flexible pressure sensors for severity grading and rehabilitation assessment in Parkinson’s disease management. Nano. Energy. 2025, 140, 111030.
99. Yang, X.; Wang, Y.; Qing, X. Electrospun ionic nanofiber membrane-based fast and highly sensitive capacitive pressure sensor. IEEE. Access. 2019, 7, 139984-93.
100. Shukla, S. Freeze drying process: a review. Int. J. Pharm. Sci. Res. 2011, 2, 3061-8. Available from: https://pdfs.semanticscholar.org/d282/c74d09f5e6f0c007eb8cb6239e4f960358d3.pdf (accessed 31 December 2025).
101. Assegehegn, G.; Brito-de la Fuente, E.; Franco, J. M.; Gallegos, C. The importance of understanding the freezing step and its impact on freeze-drying process performance. J. Pharm. Sci. 2019, 108, 1378-95.
102. Ying, B.; Chen, R. Z.; Zuo, R.; Li, J.; Liu, X. An anti-freezing, ambient-stable and highly stretchable ionic skin with strong surface adhesion for wearable sensing and soft robotics. Adv. Funct. Mater. 2021, 31, 2104665.
103. Li, J.; Lu, J.; Zhang, K.; et al. Freeze-drying induced gradient microporous composite film with high ionic conductivity for ultrasensitive wearable iontronic pressure sensor. Chem. Eng. J. 2024, 493, 152450.
104. Ren, Y.; Liu, Z.; Jin, G.; et al. Electric-field-induced gradient ionogels for highly sensitive, broad-range-response, and freeze/heat-resistant ionic fingers. Adv. Mater. 2021, 33, e2008486.
105. Yang, Z.; Zhao, Y.; Lan, Y.; et al. Screen-printable iontronic pressure sensor with thermal expansion microspheres for pulse monitoring. ACS. Appl. Mater. Interfaces. 2024, 16, 39561-71.
106. Riemer, D. The theoretical fundamentals of the screen printing process. Hybrid. Circuits. 1989, 6, 8-17.
107. Ma, G.; Guo, F.; Li, Y.; et al. A novel 3D-printed self-healing, touchless, and tactile multifunctional flexible sensor inspired by cutaneous sensory organs. Compos. Commun. 2025, 54, 102287.
108. Zhang, Y.; Tan, C. M. J.; Toepfer, C. N.; Lu, X.; Bayley, H. Microscale droplet assembly enables biocompatible multifunctional modular iontronics. Science 2024, 386, 1024-30.
109. Wei, D.; Guo, J.; Qiu, Y.; et al. Monitoring the delicate operations of surgical robots via ultra-sensitive ionic electronic skin. Natl. Sci. Rev. 2022, 9, nwac227.
110. Huang, Y.; Zhou, Y.; Wieland, S.; Li, Y.; Zhao, N.; Zaumseil, J. Tunable tactile synapses enabled by erasable doping in iongel-gated nanotube network transistors. Adv. Funct. Mater. 2025, 35, 2423030.
111. You, J.; Lu, M.; Dazhen, L.; et al. Anti-motion artifacts iontronic sensor for long-term accurate fingertip pulse monitoring. Adv. Sci. (Weinh). 2025, 12, e2414425.
112. Yang, Q.; Ye, Z.; Wu, R.; et al. A highly sensitive iontronic bimodal sensor with pressure‐temperature discriminability for robot skin. Adv. Mater. Technol. 2023, 8, 2300561.
113. Guo, H.; Liu, J.; Liu, H.; Yang, M.; Zhao, J.; Lu, T. Iontronic dynamic sensor with broad bandwidth and flat frequency response using controlled preloading strategy. ACS. Nano. 2024, 18, 5599-608.
114. Lv, T.; Li, Z.; Lv, C.; Zhang, X.; Li, Y.; Xie, M. Highly sensitive multifunctional flexible capacitive ionogel sensor for proximity,pressure and temperature perception. IEEE. Sen. J. 2025, 25, 33756-64.
115. Niu, H.; Wei, X.; Li, H.; et al. Micropyramid array bimodal electronic skin for intelligent material and surface shape perception based on capacitive sensing. Adv. Sci. (Weinh). 2024, 11, e2305528.
116. Tang, J.; Zhao, C.; Luo, Q.; Chang, Y.; Yang, Z.; Pan, T. Ultrahigh-transparency and pressure-sensitive iontronic device for tactile intelligence. NPJ. Flex. Electron. 2022, 6, 54.
117. Liu, C.; Ma, F.; Sun, Q.; et al. Highly sensitive flexible capacitive pressure sensor based on a multicross-linked dual-network ionic hydrogel for blood pressure monitoring applications. ACS. Appl. Mater. Interfaces. 2024, 16, 34042-56.
118. Wang, J.; Xiong, Z.; Wu, L.; Chen, J.; Zhu, Y. Highly sensitive and wide-range iontronic pressure sensors with a wheat awn-like hierarchical structure. J. Colloid. Interface. Sci. 2024, 669, 190-7.
119. Su, Q.; Liu, C.; Xue, T.; Zou, Q. Sensitivity-photo-patternable ionic pressure sensor array with a wearable measurement unit. ACS. Appl. Mater. Interfaces. 2022, 14, 33641-9.
120. Zhao, J.; Guo, H.; Liu, H.; et al. Carbon nanotube network topology-enhanced iontronic capacitive pressure sensor with high linearity and ultrahigh sensitivity. ACS. Appl. Mater. Interfaces. 2023, 15, 47327-37.
121. He, Q.; Zhou, Z.; Swe, M. M.; Tang, C. G.; Wang, Y.; Leong, W. L. Skin-inspired flexible and printed iontronic sensor enables bimodal sensing of robot skin for machine-learning-assisted object recognition. Nano. Energy. 2025, 134, 110583.
122. Cho, S. H.; Lee, S. W.; Yu, S.; et al. Micropatterned pyramidal ionic gels for sensing broad-range pressures with high sensitivity. ACS. Appl. Mater. Interfaces. 2017, 9, 10128-35.
123. Xu, R.; Xu, T.; She, M.; et al. Skin-friendly large matrix iontronic sensing meta-fabric for spasticity visualization and rehabilitation training via piezo-ionic dynamics. Nanomicro. Lett. 2024, 17, 90.
124. Wu, B.; Wu, W.; Ma, R.; et al. High-sensitivity and wide-range flexible ionic piezocapacitive pressure sensors with porous hemisphere array electrodes. Sensors. (Basel). 2024, 24, 366.
125. Cheng, A. J.; Chang, W.; Qiao, Y.; et al. High-performance supercapacitive pressure sensors via height-grading micro-domes of ionic conductive elastomer. ACS. Appl. Mater. Interfaces. 2024, 16, 59614-25.
126. Wu, W.; Wang, H.; Peng, X.; Ni, F.; Qiu, L.; Wang, X. Pressure and temperature bimodal tactile sensor based on electrical double-layer effect of ionic liquids. Sens. Actuators. A. Phys. 2025, 387, 116377.
127. Liu, J.; Liu, H.; Guo, H.; Huang, L.; Lu, T. Self-powered iontronic capacitive sensing unit with high sensitivity in charge-output mode. Adv. Funct. Mater. 2024, 35, 2412377.
128. Jin, M. L.; Park, S.; Lee, Y.; et al. An ultrasensitive, visco-poroelastic artificial mechanotransducer skin inspired by Piezo2 protein in mammalian Merkel cells. Adv. Mater. 2017, 29, 1770086.
129. Wang, Y.; Xiang, M.; Li, J.; et al. Highly sensitive flexible iontronic pressure sensor for marine pressure monitoring. IEEE. Electron. Device. Lett. 2024, 45, 2530-3.
130. Su, Q.; Huang, X.; Lan, K.; Xue, T.; Gao, W.; Zou, Q. Highly sensitive ionic pressure sensor based on concave meniscus for electronic skin. J. Micromech. Microeng. 2019, 30, 015009.
131. Li, L.; Zhu, G.; Wang, J.; Chen, J.; Zhao, G.; Zhu, Y. A flexible and ultrasensitive interfacial iontronic multisensory sensor with an array of unique “cup-shaped” microcolumns for detecting pressure and temperature. Nano. Energy. 2023, 105, 108012.
132. Qiao, H.; Liu, X.; Zhang, X.; Zhang, J.; Yin, M.; Yang, Q. A highly sensitive and flexible capacitive pressure sensor based on an ionic hydrogel dielectric layer with a lateral-bending microstructure. J. Mater. Chem. C. 2024, 12, 13485-94.
133. Huang, Y.; Zhao, L.; Cai, M.; et al. Arteriosclerosis assessment based on single-point fingertip pulse monitoring using a wearable iontronic sensor. Adv. Healthc. Mater. 2023, 12, e2301838.
134. Yang, X.; Li, J.; Shu, K.; et al. Customized flexible iontronic pressure sensors: Multilevel microstructures by 3D-printing for enhanced sensitivity and broad pressure range. Chem. Eng. J. 2024, 501, 157291.
135. Wang, P.; Cao, J.; Li, Y.; Sun, G.; Shao, H.; Meng, C. Highly breathable and sensitive iontronic wearable sensor based on porous ionic electrolyte and microstructure for human movement sensing. Chem. Eng. J. 2024, 495, 153525.
136. Yang, X.; Wang, Y.; Sun, H.; Qing, X. A flexible ionic liquid-polyurethane sponge capacitive pressure sensor. Sens. Actuators. A. Phys. 2019, 285, 67-72.
137. Zhu, B.; Guo, J.; Li, W.; et al. Integrated electromechanical structure for iontronic pressure sensors with linear high-sensitivity response and robust sensing stability. Adv. Funct. Mater. 2024, 34, 2406762.
138. Cetin, O.; Cicek, M. O.; Cugunlular, M.; Bolukbasi, T.; Khan, Y.; Unalan, H. E. MXene-deposited melamine foam-based iontronic pressure sensors for wearable electronics and smart numpads. Small 2024, 20, e2403202.
139. Li, B.; Ge, R.; Du, W.; et al. iWood: An intelligent iontronic device for human-wood interactions. Adv. Funct. Mater. 2024, 34, 2314190.
140. Sun, G.; Jiang, Y.; Sun, H.; Wang, P.; Meng, C.; Guo, S. Flexible, breathable, and hydrophobic iontronic tactile sensors based on a nonwoven fabric platform for permeable and waterproof wearable sensing applications. ACS. Appl. Electron. Mater. 2023, 5, 6477-89.
141. Li, Z.; Yang, J.; Zhang, Y.; et al. Ultrafast readout, crosstalk suppression iontronic array enabled by frequency-coding architecture. NPJ. Flex. Electron. 2024, 8, 9.
142. Li, J.; Ma, K.; Qin, B.; et al. An all-in-one wearable device integrating a solid-state zinc-ion battery and a capacitive pressure sensor for intelligent health monitoring. Adv. Funct. Mater. 2024, 34, 2403788.
143. Wu, X.; Liu, Q.; Zheng, L.; et al. Innervate commercial fabrics with spirally-layered iontronic fibrous sensors toward dual-functional smart garments. Adv. Sci. (Weinh). 2024, 11, e2402767.
144. Wang, H.; Zhou, S.; Chang, Y.; et al. Electrospinning fibrous membrane matrix ionic capacitive sensor for pressure value and distribution detection. Sens. Actuators. A. Phys. 2024, 366, 114952.
145. Wang, G.; Duan, J.; Sun, G.; et al. Biomimetic breathable nanofiber electronic skins with temperature-controlled self-adhesive and directional moisture-wicking properties for bifunctional pressure and non-contact sensing. Nano. Energy. 2024, 128, 109779.
146. Li, S.; Chu, J.; Li, B.; Chang, Y.; Pan, T. Handwriting iontronic pressure sensing origami. ACS. Appl. Mater. Interfaces. 2019, 11, 46157-64.
147. Zhao, X.; Yang, M.; Li, F.; et al. A “rigid-flexible” iontronic pressure sensor with high sensitivity and wide response range for hand dysfunction rehabilitation training. Chem. Eng. J. 2025, 507, 160539.
148. Zhang, X.; Lu, Q.; Zhou, L.; Zhang, W.; Zhang, X.; Hu, F. Flexible wearable iontronic pressure sensors based on an array of semiellipsoids with micropillars for health and motion monitoring. ACS. Appl. Electron. Mater. 2025, 7, 1820-8.
149. Wang, D.; Zhao, N.; Yang, Z.; et al. Iontronic capacitance-enhanced flexible three-dimensional force sensor with ultrahigh sensitivity for machine-sensing interface. IEEE. Electron. Device. Lett. 2023, 44, 2023-6.
150. Su, D.; Shen, G.; Ma, K.; et al. Enhanced sensitivity and linear-response in iontronic pressure sensors for non-contact, high-frequency vibration recognition. J. Colloid. Interface. Sci. 2024, 659, 1042-51.
151. Ma, K.; Su, D.; Qin, B.; et al. Ultra-sensitive and stable All-Fiber iontronic tactile sensors under high pressure for human movement monitoring and rehabilitation assessment. Chem. Eng. J. 2024, 486, 150017.
152. Chen, J.; Peng, K.; Yang, Y.; Dai, Y.; Huang, B.; Chen, X. Hierarchical iontronic flexible sensor with high sensitivity over ultrabroad range enabled by equilibration of microstructural compressibility and stability. ACS. Sens. 2025, 10, 921-31.
153. Xia, Y.; Zhi, X.; Guo, M.; Zhang, Y.; Ma, S.; Wang, X. Multimodal, ultrasensitive, and biomimetic electronic skin based on gradient micro-frustum ionogel for imaginary keyboard and haptic cognition. Adv. Funct. Mater. 2024, 35, 2414936.
154. Zhang, J. H.; Li, Z.; Xu, J.; et al. Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat. Commun. 2022, 13, 5839.
155. Wang, Z.; Li, T.; Chen, Y.; et al. Photodimerization induced hierarchical and asymmetric iontronic micropatterns. Nat. Commun. 2022, 13, 6487.
156. Zhang, H.; Yang, D.; Long, Q.; et al. An iontronic flexible pressure sensor based on a multistage gradient micro-dome structure with a broad sensing range for wearable devices. J. Mater. Chem. C. 2024, 12, 17829-40.
157. Cicek, M. O.; Durukan, M. B.; Yıldız, B.; et al. Ultra-sensitive bio-polymer iontronic sensors for object recognition from tactile feedback. Adv. Mater. Technol. 2023, 8, 2300322.
158. Chhetry, A.; Kim, J.; Yoon, H.; Park, J. Y. Ultrasensitive interfacial capacitive pressure sensor based on a randomly distributed microstructured iontronic film for wearable applications. ACS. Appl. Mater. Interfaces. 2019, 11, 3438-49.
159. Shao, B.; Zhang, S.; Hu, Y.; et al. Color-shifting iontronic skin for on-site, nonpixelated pressure mapping visualization. Nano. Lett. 2024.
160. Zheng, Y.; Lin, T.; Zhao, N.; et al. Highly sensitive electronic skin with a linear response based on the strategy of controlling the contact area. Nano. Energy. 2021, 85, 106013.
161. Cho, C.; Kim, D.; Lee, C.; Oh, J. H. Ultrasensitive ionic liquid polymer composites with a convex and wrinkled microstructure and their application as wearable pressure sensors. ACS. Appl. Mater. Interfaces. 2023, 15, 13625-36.
162. Bai, L.; Jin, Y.; Shang, X.; Jin, H.; Zhou, Y.; Shi, L. Highly synergistic, electromechanical and mechanochromic dual-sensing ionic skin with multiple monitoring, antibacterial, self-healing, and anti-freezing functions. J. Mater. Chem. A. 2021, 9, 23916-28.
163. Bi, X.; Yao, M.; Huang, Z.; et al. Biomimetic electronic skin based on a stretchable ionogel mechanoreceptor composed of crumpled conductive rubber electrodes for synchronous strain, pressure, and temperature detection. ACS. Appl. Mater. Interfaces. 2024, 16, 21341-55.
164. Yuan, H.; Zhang, Q.; Cheng, Y.; et al. Double-sided microstructured flexible iontronic pressure sensor with wide linear sensing range. J. Colloid. Interface. Sci. 2024, 670, 41-9.
165. Kou, H.; Pang, Y.; Yang, L.; et al. Ultrasensitive iontronic pressure sensor based on microstructure ionogel dielectric layer for wearable electronics. Nanotechnol. Precis. Eng. 2025, 8, 023010.
166. Niu, H.; Li, H.; Gao, S.; et al. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 2022, 34, e2202622.
167. Niu, H.; Li, H.; Li, N.; et al. Intelligent robotic sensory system with epidermis-dermis bionic electronic skin for autonomous hardness/softness-based material perception. Adv. Funct. Mater. 2025, 35, 2500511.
168. Xiao, Y.; Duan, Y.; Li, N.; et al. Multilayer double-sided microstructured flexible iontronic pressure sensor with a record-wide linear working range. ACS. Sens. 2021, 6, 1785-95.
169. Liu, X.; Li, Y.; Li, Y.; et al. Bionic fingerprint tactile sensor with deep learning-decoupled multimodal perception for simultaneous pressure-friction mapping. Adv. Funct. Mater. 2025, 35, e06158.
170. Lin, Q.; Huang, J.; Yang, J.; et al. Highly sensitive flexible iontronic pressure sensor for fingertip pulse monitoring. Adv. Healthc. Mater. 2020, 9, e2001023.
171. Xu, R.; She, M.; Liu, J.; et al. Skin-friendly and wearable iontronic touch panel for virtual-real handwriting interaction. ACS. Nano. 2023, 17, 8293-302.
172. Zhang, M.; Gu, M.; Shao, L.; et al. Flexible wearable capacitive sensors based on ionic gel with full-pressure ranges. ACS. Appl. Mater. Interfaces. 2023, 15, 15884-92.
173. Xu, H.; Gao, L.; Zhao, H.; et al. Stretchable and anti-impact iontronic pressure sensor with an ultrabroad linear range for biophysical monitoring and deep learning-aided knee rehabilitation. Microsyst. Nanoeng. 2021, 7, 92.
174. Wang, D.; Li, B.; Niu, S.; Han, Z.; Ren, L. Novel iontronic pressure sensor coupling high sensitivity and wide-range for stiffness identification and long-distance precise motion control. Adv. Funct. Mater. 2024, 35, 2413551.
175. Jiang, D.; Wang, T.; Wang, E.; et al. Triboelectric and iontronic dual-responsive bioinspired ionic skin for human-like dexterous robotic manipulation. Nano. Energy. 2024, 131, 110257.
176. Li, Q.; Chen, G.; Cui, Y.; et al. Highly thermal-wet comfortable and conformal silk-based electrodes for on-skin sensors with sweat tolerance. ACS. Nano. 2021, 15, 9955-66.


