REFERENCES

1. Zhang, W.; Liu, H.; Zhang, X.; Li, X.; Zhang, G.; Cao, P. 3D printed micro-electrochemical energy storage devices: from design to integration. Adv. Funct. Mater. 2021, 31, 2104909.

2. Zhang, F.; Wei, M.; Viswanathan, V. V.; et al. 3D printing technologies for electrochemical energy storage. Nano. Energy. 2017, 40, 418-31.

3. Lu, Y.; Li, Z.; Wang, X.; et al. 3D printed dual network cross-linked hydrogel electrolytes for high area capacity flexible zinc ion micro-batteries. Chem. Eng. J. 2024, 490, 151523.

4. Nujud Badawi, M.; Kuniyil, M.; Bhatia, M.; et al. Recent advances in flexible/stretchable hydrogel electrolytes in energy storage devices. J. Energy. Storage. 2023, 73, 108810.

5. Devi, L. S.; Palathinkal, R. P.; Dasmahapatra, A. K. Preparation of cross-linked PANI/PVA conductive hydrogels for electrochemical energy storage and sensing applications. Polymer 2024, 293, 126673.

6. Tiwari, R.; Verma, D. K.; Kumar, D.; et al. Single-ion-conducting SPP-SPA blend hydrogel-based pseudo-solid polymeric electrolyte material for Na+-ion constructed energy storage devices. Energy. Fuels. 2022, 36, 6459-67.

7. Yi, F.; Meng, F.; Li, Y.; et al. Highly stretchable CNT Fiber/PAAm hydrogel composite simultaneously serving as strain sensor and supercapacitor. Compos. Part. B. Eng. 2020, 198, 108246.

8. Cheng, T.; Liu, Z. T.; Qu, J.; et al. High-performance organic-inorganic hybrid conductive hydrogels for stretchable elastic all-hydrogel supercapacitors and flexible self-powered integrated systems. Adv. Sci. 2024, 11, 2403358.

9. Zhou, C.; Wu, T.; Xie, X.; et al. Advances and challenges in conductive hydrogels: From properties to applications. Eur. Polym. J. 2022, 177, 111454.

10. Han, X.; Xiao, G.; Wang, Y.; et al. Design and fabrication of conductive polymer hydrogels and their applications in flexible supercapacitors. J. Mater. Chem. A. 2020, 8, 23059-95.

11. Omidian, H.; Mfoafo, K. Three-dimensional printing strategies for enhanced hydrogel applications. Gels 2024, 10, 220.

12. Baur, E.; Hirsch, M.; Amstad, E. Porous 3D printable hydrogels. Adv. Mater. Technol. 2023, 8, 2201763.

13. Zu, G.; Meijer, M.; Mergel, O.; Zhang, H.; van Rijn, P. 3D-printable hierarchical nanogel-GelMA composite hydrogel system. Polymers 2021, 13, 2508.

14. Yin, X. Y.; Zhang, Y.; Cai, X.; et al. 3D printing of ionic conductors for high-sensitivity wearable sensors. Mater. Horiz. 2019, 6, 767-80.

15. Liu, H.; Yu, S.; Liu, B.; et al. Space-efficient 3D microalgae farming with optimized resource utilization for regenerative food. Adv. Mater. 2024, 36, 2401172.

16. Zhu, C.; Gemeda, H. B.; Duoss, E. B.; Spadaccini, C. M. Toward multiscale, multimaterial 3D printing. Adv. Mater. 2024, 36, 2314204.

17. Mu, H.; Wang, Z.; Xu, X.; et al. Heterogeneous growth of 3D printed polymer network for multi-material integration. Adv. Funct. Mater. 2025, 35, 2415638.

18. Huo, H.; Shen, J.; Wan, J.; et al. A tough and robust hydrogel constructed through carbon dots induced crystallization domains integrated orientation regulation. Nat. Commun. 2025, 16, 6221.

19. Zhu, Y.; Qin, J.; Shi, G.; et al. A focus review on 3D printing of wearable energy storage devices. Carbon. Energy. 2022, 4, 1242-61.

20. Pudkon, W.; Laomeephol, C.; Damrongsakkul, S.; Kanokpanont, S.; Ratanavaraporn, J. Comparative study of silk fibroin-based hydrogels and their potential as material for 3-dimensional (3D) printing. Molecules 2021, 26, 3887.

21. Cheng, T.; Wang, F.; Zhang, Y.; et al. 3D printable conductive polymer hydrogels with ultra-high conductivity and superior stretchability for free-standing elastic all-gel supercapacitors. Chem. Eng. J. 2022, 450, 138311.

22. Ravanbakhsh, H.; Karamzadeh, V.; Bao, G.; Mongeau, L.; Juncker, D.; Zhang, Y. S. Emerging technologies in multi-material bioprinting. Adv. Mater. 2021, 33, 2104730.

23. Khalaj, R.; Tabriz, A. G.; Junqueira, L. A.; Okereke, M. I.; Douroumis, D. 3D printed stents using fused deposition modelling. J. Drug. Deliv. Sci. Technol. 2024, 97, 105724.

24. Lim, K. S.; Galarraga, J. H.; Cui, X.; Lindberg, G. C. J.; Burdick, J. A.; Woodfield, T. B. F. Fundamentals and applications of photo-cross-linking in bioprinting. Chem. Rev. 2020, 120, 10662-94.

25. Hwang, H. H.; Zhu, W.; Victorine, G.; Lawrence, N.; Chen, S. 3D-printing of functional biomedical microdevices via light- and extrusion-based approaches. Small. Methods. 2018, 2, 1700277.

26. Malda, J.; Visser, J.; Melchels, F. P.; et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 2013, 25, 5011-28.

27. Ge, G.; Wang, Q.; Zhang, Y.; Alshareef, H. N.; Dong, X. 3D printing of hydrogels for stretchable ionotronic devices. Adv. Funct. Mater. 2021, 31, 2107437.

28. Chang, P.; Mei, H.; Zhou, S.; et al. 3D printed electrochemical energy storage devices. J. Mater. Chem. A. 2019, 7, 4230-58.

29. Zeng, L.; Li, P.; Yao, Y.; Niu, B.; Niu, S.; Xu, B. Recent progresses of 3D printing technologies for structural energy storage devices. Mater. Today. Nano. 2020, 12, 100094.

30. Jabbar Khan, A.; Mateen, A.; Khan, S.; et al. 3D printed micro-electrochemical energy storage devices. Batteries. Supercaps. 2023, 6, e202300190.

31. Fonseca, N.; Thummalapalli, S. V.; Jambhulkar, S.; et al. 3D printing-enabled design and manufacturing strategies for batteries: a review. Small 2023, 19, 2302718.

32. Tian, X.; Xu, B. 3D printing for solid-state energy storage. Small. Methods. 2021, 5, 2100877.

33. Zhang, W.; Feng, P.; Chen, J.; Sun, Z.; Zhao, B. Electrically conductive hydrogels for flexible energy storage systems. Prog. Polym. Sci. 2019, 88, 220-40.

34. Yuan, Y.; Zhang, Q.; Lin, S.; Li, J. Water: the soul of hydrogels. Prog. Mater. Sci. 2025, 148, 101378.

35. Liang, X.; Zhang, M.; Chong, C. M.; et al. Recent advances in the 3D printing of conductive hydrogels for sensor applications: a review. Polymers 2024, 16, 2131.

36. He, H.; Chen, Y.; Pu, A.; et al. Strong and high-conductivity hydrogels with all-polymer nanofibrous networks for applications as high-capacitance flexible electrodes. npj. Flex. Electron. 2024, 8, 56.

37. Lu, B.; Cheng, H.; Qu, L. Inorganic hydrogel based on low-dimensional nanomaterials. ACS. Nano. 2024, 18, 2730-49.

38. Zhao, K.; Zhao, Y.; Xu, J.; Qian, R.; Yu, Z.; Ye, C. Stretchable, adhesive and self-healing conductive hydrogels based on PEDOT:PSS-stabilized liquid metals for human motion detection. Chem. Eng. J. 2024, 494, 152971.

39. Yue, J.; Li, C.; Ji, X.; et al. Highly tough and conductive hydrogel based on defect-patched reduction graphene oxide for high-performance self-powered flexible sensing micro-system. Chem. Eng. J. 2023, 466, 143358.

40. Zhou, Y.; Fei, X.; Tian, J.; Xu, L.; Li, Y. A ionic liquid enhanced conductive hydrogel for strain sensing applications. J. Colloid. Interface. Sci. 2022, 606, 192-203.

41. Peng, H.; Wang, D.; Zhang, F.; et al. Improvements and challenges of hydrogel polymer electrolytes for advanced zinc anodes in aqueous zinc-ion batteries. ACS. Nano. 2024, 18, 21779-803.

42. Li, G.; Li, C.; Li, G.; et al. Development of conductive hydrogels for fabricating flexible strain sensors. Small 2022, 18, 2101518.

43. Zhu, T.; Ni, Y.; Biesold, G. M.; et al. Recent advances in conductive hydrogels: classifications, properties, and applications. Chem. Soc. Rev. 2023, 52, 473-509.

44. Xu, Y.; Tan, C.; He, Y.; Luo, B.; Liu, M. Chitin nanocrystals stabilized liquid metal for highly stretchable and anti-freeze hydrogels as flexible strain sensor. Carbohydr. Polym. 2024, 328, 121728.

45. Zheng, Y.; Liu, H.; Yan, L.; Yang, H.; Dai, L.; Si, C. Lignin-based encapsulation of liquid metal particles for flexible and high-efficiently recyclable electronics. Adv. Funct. Mater. 2024, 34, 2310653.

46. Zhao, D.; Wang, L.; Fang, K.; Luo, J.; Zhou, X.; Jiang, K. Fabrication of lignocellulose/liquid metal-based conductive eutectic hydrogel composite for strain sensors. Int. J. Biol. Macromol. 2024, 273, 133013.

47. Wu, S.; Wang, B.; Chen, D.; et al. Highly sensitive and self-healing conductive hydrogels fabricated from cationic cellulose nanofiber-dispersed liquid metal for strain sensors. Sci. China. Mater. 2023, 66, 1923-33.

48. Tian, L.; Liu, T.; Jiang, Y.; He, B.; Hao, H. Multifunctional hydrogel sensor with Tough, self-healing capabilities and highly sensitive for motion monitoring and wound healing. Chem. Eng. J. 2024, 497, 154890.

49. Li, W.; Tao, L. Q.; Kang, M. C.; et al. Tunable mechanical, self-healing hydrogels driven by sodium alginate and modified carbon nanotubes for health monitoring. Carbohydr. Polym. 2022, 295, 119854.

50. Park, J.; Jeon, N.; Lee, S.; Choe, G.; Lee, E.; Lee, J. Y. Conductive hydrogel constructs with three-dimensionally connected graphene networks for biomedical applications. Chem. Eng. J. 2022, 446, 137344.

51. Zheng, C.; Yue, Y.; Gan, L.; Xu, X.; Mei, C.; Han, J. Highly stretchable and self-healing strain sensors based on nanocellulose-supported graphene dispersed in electro-conductive hydrogels. Nanomaterials 2019, 9, 937.

52. Zheng, C.; Lu, K.; Lu, Y.; et al. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Carbohydr. Polym. 2020, 250, 116905.

53. Xie, T.; Ou, F.; Ning, C.; et al. Dual-network carboxymethyl chitosan conductive hydrogels for multifunctional sensors and high-performance triboelectric nanogenerators. Carbohydr. Polym. 2024, 333, 121960.

54. Sun, M.; Li, P.; Qin, H.; et al. Liquid metal/CNTs hydrogel-based transparent strain sensor for wireless health monitoring of aquatic animals. Chem. Eng. J. 2023, 454, 140459.

55. Zheng, H.; Chen, M.; Sun, Y.; Zuo, B. Self-healing, wet-adhesion silk fibroin conductive hydrogel as a wearable strain sensor for underwater applications. Chem. Eng. J. 2022, 446, 136931.

56. Xu, M.; Zhu, J.; Xie, J.; Mao, Y.; Hu, W. Dynamically cross-linked, self-healable, and stretchable all-hydrogel supercapacitor with extraordinary energy density and real-time pressure sensing. Small 2024, 20, 2305448.

57. Zhang, M.; Wang, Y.; Liu, K.; et al. Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT:PSS/cellulose nanofibrils hydrogels for wearable strain sensors. Carbohydr. Polym. 2023, 305, 120567.

58. Luo, J.; Song, T.; Han, T.; et al. Multifunctioning of carboxylic-cellulose nanocrystals on the reinforcement of compressive strength and conductivity for acrylic-based hydrogel. Carbohydr. Polym. 2024, 327, 121685.

59. He, H.; Li, H.; Pu, A.; Li, W.; Ban, K.; Xu, L. Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels. Nat. Commun. 2023, 14, 759.

60. Zhou, T.; Yuk, H.; Hu, F.; et al. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nat. Mater. 2023, 22, 895-902.

61. Bai, T.; He, X.; Yan, J.; et al. Anisotropic bamboo-polypyrrole-polyacrylamide composite hydrogels for high-performance integrated rigid supercapacitors. Chem. Eng. J. 2025, 508, 161064.

62. Zhou, C.; Zhao, X.; Xiong, Y.; et al. A review of etching methods of MXene and applications of MXene conductive hydrogels. Eur. Polym. J. 2022, 167, 111063.

63. Zhang, Y.; Zou, J.; Wang, S.; et al. Tailoring nanostructured MXene to adjust its dispersibility in conductive hydrogel for self-powered sensors. Compos. Part. B. Eng. 2024, 272, 111191.

64. Wang, X.; Zheng, S.; Xiong, J.; et al. Stretch-induced conductivity enhancement in highly conductive and tough hydrogels. Adv. Mater. 2024, 36, 2313845.

65. Li, N.; Wang, X.; Liu, Y.; et al. Ultrastretchable, self-adhesive and conductive MXene nanocomposite hydrogel for body-surface temperature distinguishing and electrophysiological signal monitoring. Chem. Eng. J. 2024, 483, 149303.

66. Wang, C.; Yang, B.; Xiang, R.; Ji, J.; Wu, Y.; Tan, S. High-saline-enabled hydrophobic homogeneous cross-linking for extremely soft, tough, and stretchable conductive hydrogels as high-sensitive strain sensors. ACS. Nano. 2023, 17, 23194-206.

67. Zhu, W.; Zhang, Y.; Huang, S.; et al. Self-assembly polysaccharide network regulated hydrogel sensors with toughness, anti-freezing, conductivity and wide working conditions. Chem. Eng. J. 2024, 497, 154409.

68. Yang, J.; Chang, L.; Ma, C.; Cao, Z.; Liu, H. Highly electrically conductive flexible ionogels by drop-casting ionic liquid/PEDOT:PSS composite liquids onto hydrogel networks. Macromol. Rapid. Commun. 2022, 43, 2100557.

69. Ge, X.; Guo, Y.; Gong, C.; et al. High-conductivity, low-impedance, and high-biological-adaptability ionic conductive hydrogels for Ear-EEG acquisition. ACS. Appl. Polym. Mater. 2023, 5, 8151-8.

70. Guo, Y.; Feng, S.; Gao, W.; et al. Attapulgite-reinforced robust and ionic conductive composite hydrogels for digital light processing 3D printing. Adv. Funct. Mater. 2024, 34, 2408775.

71. Cui, W.; Zheng, Y.; Zhu, R.; et al. Strong tough conductive hydrogels via the synergy of ion-induced cross-linking and salting-out. Adv. Funct. Mater. 2022, 32, 2204823.

72. Yao, X.; Zhang, S.; Qian, L.; et al. Super Stretchable, self-healing, adhesive ionic conductive hydrogels based on tailor-made ionic liquid for high-performance strain sensors. Adv. Funct. Mater. 2022, 32, 2204565.

73. Xia, H.; Xu, G.; Cao, X.; et al. Single-ion-conducting hydrogel electrolytes based on slide-ring pseudo-polyrotaxane for ultralong-cycling flexible zinc-ion batteries. Adv. Mater. 2023, 35, 2301996.

74. Yiming, B.; Han, Y.; Han, Z.; et al. A mechanically robust and versatile liquid-free ionic conductive elastomer. Adv. Mater. 2021, 33, 2006111.

75. Diao, W.; Wu, L.; Ma, X.; et al. Reversibly highly stretchable and self-healable zwitterion-containing polyelectrolyte hydrogel with high ionic conductivity for high-performance flexible and cold-resistant supercapacitor. J. Appl. Polym. Sci. 2020, 137, 48995.

76. Liu, J.; Wang, F.; Jiang, W.; et al. Polyzwitterionic hydrogel electrolytes via ultrafast autocatalytic gelation process for flexible Zn-ion hybrid supercapacitors. Chem. Eng. J. 2024, 483, 149360.

77. Ji, R.; Yan, S.; Zhu, Z.; et al. Ureido-ionic liquid mediated conductive hydrogel: superior integrated properties for advanced biosensing applications. Adv. Sci. 2024, 11, 2401869.

78. Zhang, Z.; Sang, M.; Pan, Y.; et al. Ionic liquid-reinforced transparent, stretchable, conductive organic ionic gel with ultra-high sensory capability and ultra-robust impact-resistance. Chem. Eng. J. 2024, 496, 154227.

79. Wan, Y.; Zhang, L.; Wu, T.; Tang, C.; Song, H.; Cao, Q. High-performance and frost-resistance MXene co-ionic liquid conductive hydrogel printed by electrohydrodynamic for flexible strain sensor. J. Colloid. Interface. Sci. 2024, 669, 688-98.

80. Zhao, W.; Zhou, H.; Li, W.; Chen, M.; Zhou, M.; Zhao, L. An environment-tolerant ion-conducting double-network composite hydrogel for high-performance flexible electronic devices. Nano. Micro. Lett. 2024, 16, 99.

81. Song, C.; Zhao, Q.; Xie, T.; et al. DLP 3D printing of electrically conductive hybrid hydrogels via polymerization-induced phase separation and subsequent in situ assembly of polypyrrole. J. Mater. Chem. A. 2024, 12, 5348-56.

82. Lodhi, S. K.; Gill, A. Y.; Hussain, I. 3D printing techniques: transforming manufacturing with precision and sustainability. ijmdsa 2024, 3, 129-38.

83. Browne, M. P.; Redondo, E.; Pumera, M. 3D printing for electrochemical energy applications. Chem. Rev. 2020, 120, 2783-810.

84. Li, M.; Zhou, S.; Cheng, L.; et al. 3D printed supercapacitor: techniques, materials, designs, and applications. Adv. Funct. Mater. 2023, 33, 2208034.

85. Baniasadi, H.; Abidnejad, R.; Fazeli, M.; et al. Innovations in hydrogel-based manufacturing: a comprehensive review of direct ink writing technique for biomedical applications. Adv. Colloid. Interface. Sci. 2024, 324, 103095.

86. Polychronopoulos, N. D.; Brouzgou, A. Direct ink writing for electrochemical device fabrication: a review of 3D-printed electrodes and ink rheology. Catalysts 2024, 14, 110.

87. Bhardwaj, D.; Singhmar, R.; Garg, M.; et al. Designing advanced hydrogel inks with direct ink writing based 3D printability for engineered biostructures. Eur. Polym. J. 2024, 205, 112736.

88. Jiang, J.; Lou, J.; Hu, G. Effect of support on printed properties in fused deposition modelling processes. Virt. Phys. Prototyp. 2019, 14, 308-15.

89. Cano-vicent, A.; Tambuwala, M. M.; Hassan, S. S.; et al. Fused deposition modelling: current status, methodology, applications and future prospects. Addit. Manuf. 2021, 47, 102378.

90. Wu, Y.; Zhang, Y.; Yan, M.; et al. Research progress on the application of inkjet printing technology combined with hydrogels. Appl. Mater. Today. 2024, 36, 102036.

91. Sun, Y.; Cui, J.; Feng, S.; et al. Projection stereolithography 3D printing high-conductive hydrogel for flexible passive wireless sensing. Adv. Mater. 2024, 36, 2400103.

92. Odent, J.; Wallin, T. J.; Pan, W.; Kruemplestaedter, K.; Shepherd, R. F.; Giannelis, E. P. Highly elastic, transparent, and conductive 3D-printed ionic composite hydrogels. Adv. Funct. Mater. 2017, 27, 1701807.

93. Han, Y.; Sun, M.; Lu, X.; et al. A 3D printable gelatin methacryloyl/chitosan hydrogel assembled with conductive PEDOT for neural tissue engineering. Compos. Part. B. Eng. 2024, 273, 111241.

94. Lee, Y. J.; Ajiteru, O.; Lee, J. S.; et al. Highly conductive, stretchable, and biocompatible graphene oxide biocomposite hydrogel for advanced tissue engineering. Biofabrication 2024, 16, 045032.

95. Lyu, Z.; Lim, G. J.; Koh, J. J.; et al. Design and manufacture of 3D-printed batteries. Joule 2021, 5, 89-114.

96. Yu, J.; Wan, R.; Tian, F.; et al. 3D printing of robust high-performance conducting polymer hydrogel-based electrical bioadhesive interface for soft bioelectronics. Small 2024, 20, 2308778.

97. Yan, X.; Tong, Y.; Wang, X.; Hou, F.; Liang, J. Extrusion-based 3D-printed supercapacitors: recent progress and challenges. Energy. Environ. Mater. 2022, 5, 800-22.

98. Karakurt, I.; Aydoğdu, A.; Çıkrıkcı, S.; Orozco, J.; Lin, L. Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: a controlled release study. Int. J. Pharm. 2020, 584, 119428.

99. Gusain, R.; Kumar, N.; Ray, S. S. 3D-printed hydrogels and aerogels for water treatment and energy storage applications. ChemistrySelect 2023, 8, e202300738.

100. Xiao, B. H.; Xiao, K.; Li, J. X.; Xiao, C. F.; Cao, S.; Liu, Z. Q. Flexible electrochemical energy storage devices and related applications: recent progress and challenges. Chem. Sci. 2024, 15, 11229-66.

101. Mevada, C.; Tissari, J.; Parihar, V. S.; et al. A 3D-printed fully biocompatible supercapacitor. J. Mater. Chem. A. 2024, 12, 24357-69.

102. Meng, J.; Tan, Z.; Zong, W.; et al. 3D-printed ultrahigh-conductivity polymer gel electrodes with high mass loading for thickness-independent zinc-ion hybrid micro-supercapacitors. Adv. Funct. Mater. 2025, e10541.

103. Zhu, Y.; Zhang, Q.; Ma, J.; et al. Three-dimensional (3D)-printed MXene high-voltage aqueous micro-supercapacitors with ultrahigh areal energy density and low-temperature tolerance. Carbon. Energy. 2024, 6, e481.

104. Mogli, G.; Reina, M.; Chiappone, A.; et al. Self-powered integrated tactile sensing system based on ultrastretchable, self-healing and 3D printable ionic conductive hydrogel. Adv. Funct. Mater. 2024, 34, 2307133.

105. Liu, D.; Wang, Z.; Qian, Q.; et al. Customizable supercapacitors via 3D printed gel electrolyte. Adv. Funct. Mater. 2023, 33, 2214301.

106. Kil, H. J.; Kim, S. R.; Park, J. W. A self-charging supercapacitor for a patch-type glucose sensor. ACS. Appl. Mater. Interfaces. 2022, 14, 3838-48.

107. Pazhamalai, P.; Krishnamoorthy, K.; Manoharan, S.; Mariappan, V. K.; Kim, S. Monolithic integration of MoS2 quantum sheets on solid electrolyte for self-charging supercapacitor power cell governed by piezo-ionic effect. Sustain. Mater. Technol. 2022, 33, e00459.

108. Chae, C.; Kim, Y.; Lee, S. S.; et al. All-3D-printed solid-state microsupercapacitors. Energy. Storage. Mater. 2021, 40, 1-9.

109. Zhang, M.; Mei, H.; Chang, P.; et al. 3D printing of structured electrodes for rechargeable batteries. J. Mater. Chem. A. 2020, 8, 10670-94.

110. Qu, S.; Liu, B.; Wu, J.; et al. Kirigami-inspired flexible and stretchable zinc-air battery based on metal-coated sponge electrodes. ACS. Appl. Mater. Interfaces. 2020, 12, 54833-41.

111. Yu, Y.; Luo, Y.; Wu, H.; et al. Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. Nanoscale 2018, 10, 19972-8.

112. Shi, G.; Peng, X.; Zeng, J.; et al. A liquid metal microdroplets initialized hemicellulose composite for 3D printing anode host in Zn-ion battery. Adv. Mater. 2023, 35, 2300109.

113. Bao, Y.; Liu, Y.; Kuang, Y.; Fang, D.; Li, T. 3D-printed highly deformable electrodes for flexible lithium ion batteries. Energy. Storage. Mater. 2020, 33, 55-61.

114. Chen, Z.; Zhao, D.; Liu, B.; et al. 3D printing of multifunctional hydrogels. Adv. Funct. Mater. 2019, 29, 1900971.

115. Poompiew, N.; Jirawatanaporn, N.; Okhawilai, M.; et al. 3D-printed polyacrylamide-based hydrogel polymer electrolytes for flexible zinc-ion battery. Electrochim. Acta. 2023, 466, 143076.

116. Dubal, D. P.; Kim, J. G.; Kim, Y.; Holze, R.; Lokhande, C. D.; Kim, W. B. Supercapacitors based on flexible substrates: an overview. Energy. Technol. 2014, 2, 325-41.

117. Li, T.; Saadatnia, Z.; Chen, T.; Chen, J. X. M.; Shi, H. T. H.; Naguib, H. E. Facile material extrusion of 3D wearable conductive-polymer micro-super-capacitors. Addit. Manuf. 2023, 74, 103714.

118. Li, L.; Meng, J.; Bao, X.; et al. Direct-Ink-Write 3D printing of programmable micro-supercapacitors from MXene-regulating conducting polymer inks. Adv. Energy. Mater. 2023, 13, 2203683.

119. Yang, J.; Cao, Q.; Tang, X.; et al. 3D-printed highly stretchable conducting polymer electrodes for flexible supercapacitors. J. Mater. Chem. A. 2021, 9, 19649-58.

120. Sun, C.; Liu, S.; Shi, X.; Lai, C.; Liang, J.; Chen, Y. 3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery. Chem. Eng. J. 2020, 381, 122641.

121. Gaikwad, A. M.; Arias, A. C.; Steingart, D. A. Recent progress on printed flexible batteries: mechanical challenges, printing technologies, and future prospects. Energy. Tech. 2015, 3, 305-28.

122. Ma, J.; Zheng, S.; Fu, Y.; Wang, X.; Qin, J.; Wu, Z. S. The status and challenging perspectives of 3D-printed micro-batteries. Chem. Sci. 2024, 15, 5451-81.

123. Mao, L.; Meng, Q.; Ahmad, A.; Wei, Z. Mechanical analyses and structural design requirements for flexible energy storage devices. Adv. Energy. Mater. 2017, 7, 1700535.

124. Lu, Y.; Wang, Z.; Li, M.; et al. 3D printed flexible zinc ion micro-batteries with high areal capacity toward practical application. Adv. Funct. Mater. 2024, 34, 2310966.

125. Zhao, Y.; Guo, J. Development of flexible Li-ion batteries for flexible electronics. InfoMat 2020, 2, 866-78.

126. Yu, J.; Tian, F.; Wang, W.; et al. Design of highly conductive, intrinsically stretchable, and 3D printable PEDOT:PSS hydrogels via PSS-chain engineering for bioelectronics. Chem. Mater. 2023, 35, 5936-44.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/