REFERENCES
1. Zhang, J. PEM fuel cell electrocatalysts and catalyst layers. London: Springer; 2008.
2. Chen, G.; Wang, C.; Lei, Y.; et al. Gradient design of Pt/C ratio and Nafion content in cathode catalyst layer of PEMFCs. Int. J. Hydrogen. Energy. 2017, 42, 29960-5.
3. Kulikovsky, A. A model for optimal catalyst layer in a fuel cell. Electrochim. Acta. 2012, 79, 31-6.
4. Ayoub, M.; Böhm, T.; Bierling, M.; Thiele, S.; Brodt, M. Review - graded catalyst layers in hydrogen fuel cells - a pathway to application-tailored cells. J. Electrochem. Soc. 2024, 171, 094503.
5. Garsany, Y.; Atkinson, R. W.; Gould, B. D.; et al. Dual-layer catalyst layers for increased proton exchange membrane fuel cell performance. J. Power. Sources. 2021, 514, 230574.
6. Baricci, A.; Bonanomi, M.; Yu, H.; Guetaz, L.; Maric, R.; Casalegno, A. Modelling analysis of low platinum polymer fuel cell degradation under voltage cycling: gradient catalyst layers with improved durability. J. Power. Sources. 2018, 405, 89-100.
7. Yu, H.; Baricci, A.; Casalegno, A.; Guetaz, L.; Bonville, L.; Maric, R. Strategies to mitigate Pt dissolution in low Pt loading proton exchange membrane fuel cell: II. A gradient Pt loading design. Electrochim. Acta. 2017, 247, 1169-79.
8. Kim, G.; Eom, K.; Kim, M.; et al. Design of an advanced membrane electrode assembly employing a double-layered cathode for a PEM fuel cell. ACS. Appl. Mater. Interfaces. 2015, 7, 27581-5.
9. Fofana, D.; Natarajan, S. K.; Hamelin, J.; Benard, P. Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach. Energy 2014, 64, 398-403.
10. Roshandel, R.; Ahmadi, F. Effects of catalyst loading gradient in catalyst layers on performance of polymer electrolyte membrane fuel cells. Renew. Energy. 2013, 50, 921-31.
11. Matsuda, H.; Fushinobu, K.; Ohma, A.; Okazaki, K. Structural effect of cathode catalyst layer on the performance of PEFC. J. Ther. Sci. Technol. 2011, 6, 154-63.
12. Jain, P.; Biegler, L. T.; Jhon, M. S. Optimization of polymer electrolyte fuel cell cathodes. Electrochem. Solid. State. Lett. 2008, 11, B193.
13. Taylor, A. D.; Kim, E. Y.; Humes, V. P.; Kizuka, J.; Thompson, L. T. Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells. J. Power. Sources. 2007, 171, 101-6.
14. Huang, X.; He, Y.; Sun, Y.; Sun, L.; Wang, T.; Zhang, X. Gradient ionomer designed cathode catalyst layer for proton exchange membrane fuel cells with enhanced performance. J. Power. Sources. 2024, 603, 234488.
15. Zhang, X.; Shi, P. Dual-bonded catalyst layer structure cathode for PEMFC. Electrochem. Commun. 2006, 8, 1229-34.
16. Xie, Z.; Navessin, T.; Shi, K.; et al. Functionally graded cathode catalyst layers for polymer electrolyte fuel cells: II. Experimental study of the effect of nafion distribution. J. Electrochem. Soc. 2005, 152, A1171.
17. Yoon, Y.; Yang, T.; Park, G.; Lee, W.; Kim, C. A multi-layer structured cathode for the PEMFC. J. Power. Sources. 2003, 118, 189-92.
18. Wang, Q.; Eikerling, M.; Song, D.; et al. Functionally graded cathode catalyst layers for polymer electrolyte fuel cells: I. Theoretical modeling. J. Electrochem. Soc. 2004, 151, A950.
19. Nguyen, H.; Sultanova, D.; Heizmann, P. A.; Vierrath, S.; Breitwieser, M. Improving the efficiency of fully hydrocarbon-based proton-exchange membrane fuel cells by ionomer content gradients in cathode catalyst layers. Mater. Adv. 2022, 3, 8460-8.
20. Shahgaldi, S.; Ozden, A.; Li, X.; Hamdullahpur, F. Cathode catalyst layer design with gradients of ionomer distribution for proton exchange membrane fuel cells. Energy. Convers. Manag. 2018, 171, 1476-86.
21. Jung, D. W.; Kim, J. H.; Kim, S. H.; Kim, J. B.; Oh, E. S. Performance enhancement of polymer electrolyte membrane fuel cells by dual-layered membrane electrode assembly structures with carbon nanotubes. J. Nanosci. Nanotechnol. 2013, 13, 3650-4.
22. Su, H.; Liao, S.; Wu, Y. Significant improvement in cathode performance for proton exchange membrane fuel cell by a novel double catalyst layer design. J. Power. Sources. 2010, 195, 3477-80.
23. Xuan, Z.; Fang, W.; Zhao, G.; Tao, W. Optimal gradient designs of catalyst layers for boosting performance: a data-driven-assisted model. Appl. Energy. 2025, 377, 124756.
24. Xing, L.; Shi, W.; Das, P. K.; Scott, K. Inhomogeneous distribution of platinum and ionomer in the porous cathode to maximize the performance of a PEM fuel cell. AIChE. J. 2017, 63, 4895-910.
25. Srinivasarao, M.; Bhattacharyya, D.; Rengaswamy, R. Optimization studies of a polymer electrolyte membrane fuel cell with multiple catalyst layers. J. Power. Sources. 2012, 206, 197-203.
26. Srinivasarao, M.; Bhattacharyya, D.; Rengaswamy, R.; Narasimhan, S. Performance analysis of a PEM fuel cell cathode with multiple catalyst layers. Int. J. Hydrogen. Energy. 2010, 35, 6356-65.
27. Song, D.; Wang, Q.; Liu, Z.; et al. A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells. Electrochim. Acta. 2005, 50, 3347-58.
28. Lei, H.; Xing, L.; Jiang, H.; et al. Designing graded fuel cell electrodes for proton exchange membrane (PEM) fuel cells with recurrent neural network (RNN) approaches. Chem. Eng. Sci. 2023, 267, 118350.
29. Zhao, G.; Fang, W.; Xuan, Z.; Tao, W. Optimization of gradient catalyst layers in PEMFCs based on neural network models. Energies 2025, 18, 2570.
30. Liu, Z.; Yang, W.; Zhang, J.; Lin, Y.; Zhang, J.; Qu, Z. Gradient catalyst layer design for low-Pt-loading PEM fuel cell based on artificial neural network and multi-objective optimization. Int. J. Hydrogen. Energy. 2025, 141, 650-64.
31. Caidi, A.; Lange, T.; Radev, I.; Peinecke, V.; Özcan, F.; Segets, D. Impact of sonication treatment on physicochemical properties of carbon blacks and Pt/C catalysts in proton exchange membrane fuel cells. Particle. Particle. Syst. Charact. 2025, e00057.
32. Lin, R.; Wang, H.; Zhu, Y. Optimizing the structural design of cathode catalyst layer for PEM fuel cells for improving mass-specific power density. Energy 2021, 221, 119909.
33. Kim, K.; Kim, H.; Lee, K.; et al. Effect of Nafion® gradient in dual catalyst layer on proton exchange membrane fuel cell performance. Int. J. Hydrogen. Energy. 2008, 33, 2783-9.