REFERENCES

1. Zhang, J. PEM fuel cell electrocatalysts and catalyst layers. London: Springer; 2008.

2. Chen, G.; Wang, C.; Lei, Y.; et al. Gradient design of Pt/C ratio and Nafion content in cathode catalyst layer of PEMFCs. Int. J. Hydrogen. Energy. 2017, 42, 29960-5.

3. Kulikovsky, A. A model for optimal catalyst layer in a fuel cell. Electrochim. Acta. 2012, 79, 31-6.

4. Ayoub, M.; Böhm, T.; Bierling, M.; Thiele, S.; Brodt, M. Review - graded catalyst layers in hydrogen fuel cells - a pathway to application-tailored cells. J. Electrochem. Soc. 2024, 171, 094503.

5. Garsany, Y.; Atkinson, R. W.; Gould, B. D.; et al. Dual-layer catalyst layers for increased proton exchange membrane fuel cell performance. J. Power. Sources. 2021, 514, 230574.

6. Baricci, A.; Bonanomi, M.; Yu, H.; Guetaz, L.; Maric, R.; Casalegno, A. Modelling analysis of low platinum polymer fuel cell degradation under voltage cycling: gradient catalyst layers with improved durability. J. Power. Sources. 2018, 405, 89-100.

7. Yu, H.; Baricci, A.; Casalegno, A.; Guetaz, L.; Bonville, L.; Maric, R. Strategies to mitigate Pt dissolution in low Pt loading proton exchange membrane fuel cell: II. A gradient Pt loading design. Electrochim. Acta. 2017, 247, 1169-79.

8. Kim, G.; Eom, K.; Kim, M.; et al. Design of an advanced membrane electrode assembly employing a double-layered cathode for a PEM fuel cell. ACS. Appl. Mater. Interfaces. 2015, 7, 27581-5.

9. Fofana, D.; Natarajan, S. K.; Hamelin, J.; Benard, P. Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach. Energy 2014, 64, 398-403.

10. Roshandel, R.; Ahmadi, F. Effects of catalyst loading gradient in catalyst layers on performance of polymer electrolyte membrane fuel cells. Renew. Energy. 2013, 50, 921-31.

11. Matsuda, H.; Fushinobu, K.; Ohma, A.; Okazaki, K. Structural effect of cathode catalyst layer on the performance of PEFC. J. Ther. Sci. Technol. 2011, 6, 154-63.

12. Jain, P.; Biegler, L. T.; Jhon, M. S. Optimization of polymer electrolyte fuel cell cathodes. Electrochem. Solid. State. Lett. 2008, 11, B193.

13. Taylor, A. D.; Kim, E. Y.; Humes, V. P.; Kizuka, J.; Thompson, L. T. Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells. J. Power. Sources. 2007, 171, 101-6.

14. Huang, X.; He, Y.; Sun, Y.; Sun, L.; Wang, T.; Zhang, X. Gradient ionomer designed cathode catalyst layer for proton exchange membrane fuel cells with enhanced performance. J. Power. Sources. 2024, 603, 234488.

15. Zhang, X.; Shi, P. Dual-bonded catalyst layer structure cathode for PEMFC. Electrochem. Commun. 2006, 8, 1229-34.

16. Xie, Z.; Navessin, T.; Shi, K.; et al. Functionally graded cathode catalyst layers for polymer electrolyte fuel cells: II. Experimental study of the effect of nafion distribution. J. Electrochem. Soc. 2005, 152, A1171.

17. Yoon, Y.; Yang, T.; Park, G.; Lee, W.; Kim, C. A multi-layer structured cathode for the PEMFC. J. Power. Sources. 2003, 118, 189-92.

18. Wang, Q.; Eikerling, M.; Song, D.; et al. Functionally graded cathode catalyst layers for polymer electrolyte fuel cells: I. Theoretical modeling. J. Electrochem. Soc. 2004, 151, A950.

19. Nguyen, H.; Sultanova, D.; Heizmann, P. A.; Vierrath, S.; Breitwieser, M. Improving the efficiency of fully hydrocarbon-based proton-exchange membrane fuel cells by ionomer content gradients in cathode catalyst layers. Mater. Adv. 2022, 3, 8460-8.

20. Shahgaldi, S.; Ozden, A.; Li, X.; Hamdullahpur, F. Cathode catalyst layer design with gradients of ionomer distribution for proton exchange membrane fuel cells. Energy. Convers. Manag. 2018, 171, 1476-86.

21. Jung, D. W.; Kim, J. H.; Kim, S. H.; Kim, J. B.; Oh, E. S. Performance enhancement of polymer electrolyte membrane fuel cells by dual-layered membrane electrode assembly structures with carbon nanotubes. J. Nanosci. Nanotechnol. 2013, 13, 3650-4.

22. Su, H.; Liao, S.; Wu, Y. Significant improvement in cathode performance for proton exchange membrane fuel cell by a novel double catalyst layer design. J. Power. Sources. 2010, 195, 3477-80.

23. Xuan, Z.; Fang, W.; Zhao, G.; Tao, W. Optimal gradient designs of catalyst layers for boosting performance: a data-driven-assisted model. Appl. Energy. 2025, 377, 124756.

24. Xing, L.; Shi, W.; Das, P. K.; Scott, K. Inhomogeneous distribution of platinum and ionomer in the porous cathode to maximize the performance of a PEM fuel cell. AIChE. J. 2017, 63, 4895-910.

25. Srinivasarao, M.; Bhattacharyya, D.; Rengaswamy, R. Optimization studies of a polymer electrolyte membrane fuel cell with multiple catalyst layers. J. Power. Sources. 2012, 206, 197-203.

26. Srinivasarao, M.; Bhattacharyya, D.; Rengaswamy, R.; Narasimhan, S. Performance analysis of a PEM fuel cell cathode with multiple catalyst layers. Int. J. Hydrogen. Energy. 2010, 35, 6356-65.

27. Song, D.; Wang, Q.; Liu, Z.; et al. A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells. Electrochim. Acta. 2005, 50, 3347-58.

28. Lei, H.; Xing, L.; Jiang, H.; et al. Designing graded fuel cell electrodes for proton exchange membrane (PEM) fuel cells with recurrent neural network (RNN) approaches. Chem. Eng. Sci. 2023, 267, 118350.

29. Zhao, G.; Fang, W.; Xuan, Z.; Tao, W. Optimization of gradient catalyst layers in PEMFCs based on neural network models. Energies 2025, 18, 2570.

30. Liu, Z.; Yang, W.; Zhang, J.; Lin, Y.; Zhang, J.; Qu, Z. Gradient catalyst layer design for low-Pt-loading PEM fuel cell based on artificial neural network and multi-objective optimization. Int. J. Hydrogen. Energy. 2025, 141, 650-64.

31. Caidi, A.; Lange, T.; Radev, I.; Peinecke, V.; Özcan, F.; Segets, D. Impact of sonication treatment on physicochemical properties of carbon blacks and Pt/C catalysts in proton exchange membrane fuel cells. Particle. Particle. Syst. Charact. 2025, e00057.

32. Lin, R.; Wang, H.; Zhu, Y. Optimizing the structural design of cathode catalyst layer for PEM fuel cells for improving mass-specific power density. Energy 2021, 221, 119909.

33. Kim, K.; Kim, H.; Lee, K.; et al. Effect of Nafion® gradient in dual catalyst layer on proton exchange membrane fuel cell performance. Int. J. Hydrogen. Energy. 2008, 33, 2783-9.

34. Odungat, A. S.; Grebener, L.; Pasdag, O.; et al. A multiscale pore analysis method for polymer electrolyte membrane fuel cell catalyst layers validated and exemplified by correlating microstructure with production process parameters. Adv. Energy. Sustain. Res. 2025, 2500043.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/