REFERENCES

1. Zhang, Z.; Yang, X.; Liu, K.; Wang, R. Epitaxy of 2D materials toward single crystals. Adv. Sci. 2022, 9, e2105201.

2. Yang, M.; Xiong, K.; Chen, X.; Zhong, H.; Lin, S. Ultra-low-power-consuming liquid-water-based optoelectronic computing chip. Device 2024, 2, 100547.

3. Cheng, Z.; Cao, R.; Wei, K.; et al. 2D materials enabled next-generation integrated optoelectronics: from fabrication to applications. Adv. Sci. 2021, 8, e2003834.

4. Splendiani, A.; Sun, L.; Zhang, Y.; et al. Emerging photoluminescence in monolayer MoS2. Nano. Lett. 2010, 10, 1271-5.

5. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

6. Zhang, X.; Nan, H.; Xiao, S.; et al. Shape-uniform, high-quality monolayered MoS2 crystals for gate-tunable photoluminescence. ACS. Appl. Mater. Interfaces. 2017, 9, 42121-30.

7. Liu, H.; Si, M.; Najmaei, S.; et al. Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano. Lett. 2013, 13, 2640-6.

8. Kang, M.; Kim, S. J.; Song, W.; et al. Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method. Carbon 2017, 116, 167-73.

9. Gautam, S.; Chugh, S.; Gates, B. D. Electrodeposition of PdPt nanoparticles on edges and S-vacancies in exfoliated MoS2 nanosheets for enhanced hydrogen evolution activity. ChemSusChem 2024, 17, e202301922.

10. Gao, Q.; Zhang, C.; Yang, K.; et al. High-performance CVD bilayer MoS2 radio frequency transistors and gigahertz mixers for flexible nanoelectronics. Micromachines 2021, 12, 451.

11. Kim, J. K.; Song, Y.; Kim, T. Y.; et al. Analysis of noise generation and electric conduction at grain boundaries in CVD-grown MoS2 field effect transistors. Nanotechnology 2017, 28, 47LT01.

12. Khandelwal, G.; Deswal, S.; Shakthivel, D.; Dahiya, R. Recent developments in 2D materials for energy harvesting applications. J. Phys. Energy. 2023, 5, 032001.

13. Priya, S.; Mandal, D.; Chowdhury, A.; Kansal, S.; Chandra, A. Time-dependent exfoliation study of MoS2 for its use as a cathode material in high-performance hybrid supercapacitors. Nanoscale. Adv. 2023, 5, 1172-82.

14. Singh, A.; Mishra, A. K. Large area CVD-grown vertically and horizontally oriented MoS2 nanostructures as SERS biosensors for single molecule detection. Nanoscale 2023, 15, 16480-92.

15. Xu, C.; Pan, C.; Liu, Y.; Wang, Z. Hybrid cells for simultaneously harvesting multi-type energies for self-powered micro/nanosystems. Nano. Energy. 2012, 1, 259-72.

16. Oh, H.; Kwak, S. S.; Kim, B.; et al. Highly conductive ferroelectric cellulose composite papers for efficient triboelectric nanogenerators. Adv. Funct. Mater. 2019, 29, 1904066.

17. Ye, X.; Zheng, Z.; Werner, J. G.; Boley, J. W. Mechanically rupturing liquid metal oxide induces electrochemical energy (Adv. Funct. Mater. 31/2024). Adv. Funct. Mater. 2024, 34, 2470174.

18. Yang, C.; He, J.; Guo, Y.; et al. Highly conductive liquid metal electrode based stretchable piezoelectric-enhanced triboelectric nanogenerator for harvesting irregular mechanical energy. Mater. Des. 2021, 201, 109508.

19. Ahmadi, R.; Abnavi, A.; Hasani, A.; et al. Pseudocapacitance-induced synaptic plasticity of tribo-phototronic effect between ionic liquid and 2D MoS2. Small 2024, 20, e2304988.

20. Aji, A. S.; Nishi, R.; Ago, H.; Ohno, Y. High output voltage generation of over 5 V from liquid motion on single-layer MoS2. Nano. Energy. 2020, 68, 104370.

21. Kumar, S.; Sharma, A.; Gupta, V.; Tomar, M. Development of novel MoS2 hydrovoltaic nanogenerators for electricity generation from moving NaCl droplet. J. Alloys. Compd. 2021, 884, 161058.

22. Wang, T.; Guo, J.; Zhang, Y.; et al. Synthesis of high-quality monolayer MoS2 via a CVD upstream deposition strategy for charge capture and collection. Cryst. Growth. Des. 2024, 24, 2755-63.

23. van, der. Zande. A. M.; Huang, P. Y.; Chenet, D. A.; et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554-61.

24. You, J.; Hossain, M. D.; Luo, Z. Synthesis of 2D transition metal dichalcogenides by chemical vapor deposition with controlled layer number and morphology. Nano. Converg. 2018, 5, 26.

25. Zhao, T.; Guo, J.; Li, T.; et al. Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chem. Soc. Rev. 2023, 52, 1650-71.

26. Chen, L.; Liu, B.; Ge, M.; Ma, Y.; Abbas, A. N.; Zhou, C. Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS. Nano. 2015, 9, 8368-75.

27. Yu, H.; Yang, Z.; Du, L.; et al. Precisely aligned monolayer MoS2 epitaxially grown on h-BN basal plane. Small 2017, 13, 1603005.

28. Zhou, X.; Xue, X.; Cai, L.; Liu, S.; Liu, M.; Yu, G. Large-area orientation-controlled growth of hexagonal boron nitride on liquid copper. ACS. Appl. Electron. Mater. 2022, 4, 6261-8.

29. Aljarb, A.; Cao, Z.; Tang, H. L.; et al. Substrate lattice-guided seed formation controls the orientation of 2D transition-metal dichalcogenides. ACS. Nano. 2017, 11, 9215-22.

30. Ji, Q.; Kan, M.; Zhang, Y.; et al. Unravelling orientation distribution and merging behavior of monolayer MoS2 domains on sapphire. Nano. Lett. 2015, 15, 198-205.

31. Park, Y.; Ahn, C.; Ahn, J. G.; et al. Critical role of surface termination of sapphire substrates in crystallographic epitaxial growth of MoS2 using inorganic molecular precursors. ACS. Nano. 2023, 17, 1196-205.

32. Liu, L.; Li, T.; Ma, L.; et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 2022, 605, 69-75.

33. Li, T.; Guo, W.; Ma, L.; et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201-7.

34. Wang, Q.; Li, N.; Tang, J.; et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano. Lett. 2020, 20, 7193-9.

35. Ma, Z.; Wang, S.; Deng, Q.; et al. Epitaxial growth of rectangle shape MoS2 with highly aligned orientation on twofold symmetry a-Plane sapphire. Small 2020, 16, e2000596.

36. Dong, J.; Liu, Y.; Ding, F. Mechanisms of the epitaxial growth of two-dimensional polycrystals. NPJ. Comput. Mater. 2022, 8, 797.

37. Ji, H. G.; Lin, Y.; Nagashio, K.; et al. Hydrogen-assisted epitaxial growth of monolayer tungsten disulfide and seamless grain stitching. Chem. Mater. 2018, 30, 403-11.

38. Yao, W.; Wu, B.; Liu, Y. Growth and grain boundaries in 2D materials. ACS. Nano. 2020, 14, 9320-46.

39. Yang, P.; Liu, F.; Li, X.; et al. Highly reproducible epitaxial growth of wafer-scale single-crystal monolayer MoS2 on sapphire. Small. Methods. 2023, 7, e2300165.

40. Li, L.; Wang, Q.; Wu, F.; et al. Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control. Nat. Commun. 2024, 15, 1825.

41. Rajan A, Warner JH, Blankschtein D, Strano MS. Generalized mechanistic model for the chemical vapor deposition of 2D transition metal dichalcogenide monolayers. ACS. Nano. 2016, 10, 4330-44.

42. Kang, L.; Tian, D.; Meng, L.; et al. Epitaxial growth of highly-aligned MoS2 on c-plane sapphire. Surf. Sci. 2022, 720, 122046.

43. Su, L.; Zhang, Y.; Yu, Y.; Cao, L. Dependence of coupling of quasi 2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering. Nanoscale 2014, 6, 4920-7.

44. Ling, X.; Lee, Y. H.; Lin, Y.; et al. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano. Lett. 2014, 14, 464-72.

45. Najmaei, S.; Liu, Z.; Zhou, W.; et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754-9.

46. Li, J.; Wang, S.; Jiang, Q.; et al. Single-crystal MoS2 monolayer wafer grown on Au (111) film substrates. Small 2021, 17, e2100743.

47. Wu, S.; Zeng, Y.; Zeng, X.; et al. High-performance p-type MoS2 field-effect transistor by toroidal-magnetic-field controlled oxygen plasma doping. 2D. Mater. 2019, 6, 025007.

48. Xu, X.; Pan, Y.; Zhong, Y.; Ge, L.; Jiang, S. P.; Shao, Z. From scheelite BaMoO4 to perovskite BaMoO3: enhanced electrocatalysis toward the hydrogen evolution in alkaline media. Compos. Part. B. Eng. 2020, 198, 108214.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/