REFERENCES
1. Khenfer, R.; Lekbir, A.; Rouabah, Z.; et al. Experimental investigation of water-based photovoltaic/thermal-thermoelectric hybrid system: energy, exergy, economic and environmental assessment. J. Power. Sources. 2024, 598, 234151.
2. Lekbir, A.; Hassani, S.; Mekhilef, S. Techno-economic and life cycle assessment of a nanofluid-based concentrated Photovoltaic/Thermal-Thermoelectric hybrid system. J. Power. Sources. 2024, 595, 234066.
3. Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M. D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy. Strategy. Rev. 2019, 24, 38-50.
4. Mehta, P.; Gaur, A.; Kumar, C.; Nella, A.; Bhowmick, A.; Rajagopal, M. Energy harvesting techniques and trends in electronic applications. In: Nella A, Bhowmick A, Kumar C, Rajagopal M, editors. Energy harvesting trends for low power compact electronic devices. Cham: Springer International Publishing; 2023. pp. 205-20.
5. Muchuweni, E.; Mombeshora, E. T. Recent advances in thermoelectric performance by incorporating graphene-based materials for energy harvesting. Renew. Energy. Focus. 2023, 45, 40-52.
6. Xin, J.; Basit, A.; Li, S.; Danto, S.; Tjin, S. C.; Wei, L. Inorganic thermoelectric fibers: a review of materials, fabrication methods, and applications. Sensors 2021, 21, 3437.
7. Mamur, H.; Dilmaç, ÖF.; Begum, J.; Bhuiyan, M. R. A. Thermoelectric generators act as renewable energy sources. Cleaner. Mater. 2021, 2, 100030.
8. Olabi, A.; Al-Murisi, M.; Maghrabie, H. M.; et al. Potential applications of thermoelectric generators (TEGs) in various waste heat recovery systems. Int. J. Thermofluids. 2022, 16, 100249.
9. Manghwar, R.; Selvaraj, J.; Abd Rahim, N.; Kumar, L.; Khoharo, H. Global advancements of solar thermoelectric generators application, limitations, and prospects: a comprehensive review. Appl. Therm. Eng. 2024, 257, 124231.
10. Rjafallah, A.; Younis, A.; Cotfas, D. T.; Cotfas, P. A. Effects of temperature uniformity and nonuniformity on thermoelectric generator performance across hot and cold sides. Case. Stud. Therm. Eng. 2024, 59, 104596.
11. Lekbir, A.; Hassani, S.; Ab Ghani, M. R.; Gan, C. K.; Mekhilef, S.; Saidur, R. Improved energy conversion performance of a novel design of concentrated photovoltaic system combined with thermoelectric generator with advance cooling system. Energy. Convers. Manag. 2018, 177, 19-29.
12. Shi, X.; Cao, T.; Chen, W.; et al. Advances in flexible inorganic thermoelectrics. EcoEnergy 2023, 1, 296-343.
13. Zheng, Z.; Shi, X.; Ao, D.; et al. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nat. Sustain. 2023, 6, 180-91.
14. Chen, Y. X.; Shi, X. L.; Zhang, J. Z.; et al. Deviceization of high-performance and flexible Ag2Se films for electronic skin and servo rotation angle control. Nat. Commun. 2024, 15, 8356.
15. Zhang, M.; Shi, X.; Liu, S.; et al. Compositing effect leads to extraordinary performance in GeSe-based thermoelectrics. Adv. Funct. Mater. 2025, 2500898.
16. Hu, B.; Shi, X. L.; Cao, T.; et al. Realizing high performance in flexible Mg3Sb2-xBix thin-film thermoelectrics. Adv. Sci. 2025, e2502683.
17. Chan, Z.; Lim, J. H. Life cycle analysis of thermoelectric generator efficiency for waste heat recovery. AIP. Conf. Proc. 2020, 2233, 020003.
18. Lan, Y.; Lu, J.; Wang, S. Study of the geometry and structure of a thermoelectric leg with variable material properties and side heat dissipation based on thermodynamic, economic, and environmental analysis. Energy 2023, 282, 128895.
19. Ibn-Mohammed, T.; Koh, S.; Mustapha, K.; et al. Techno-environmental analysis of material substitution in thermoelectric modules: non-oxide (bismuth telluride alloys) vs. oxide-based (lanthanum-doped strontium titanate and calcium cobaltite) materials. Energy. Convers. Manag. X. 2023, 19, 100395.
20. Soleimani, Z.; Zoras, S.; Ceranic, B.; Shahzad, S.; Cui, Y. The cradle to gate life-cycle assessment of thermoelectric materials: A comparison of inorganic, organic and hybrid types. Sustain. Energy. Technol. Assess. 2021, 44, 101073.
21. Dhawan, R.; Madusanka, P.; Hu, G.; et al. Si0.97Ge0.03 microelectronic thermoelectric generators with high power and voltage densities. Nat. Commun. 2020, 11, 4362.
22. Pavlovskaya, N. T.; Litovchenko, P. G.; Ugrin, Y. O.; Pavlovskyy, Y. V.; Ostrovskii, I. P.; Rogacki, K. Magnetoresistance of proton irradiated Si0.97Ge0.03 whiskers. Mod. Electron. Mater. 2016, 2, 85-8.
23. Parashchuk, T.; Kostyuk, O.; Nykyruy, L.; Dashevsky, Z. High thermoelectric performance of p-type Bi0.5Sb1.5Te3 films on flexible substrate. Mater. Chem. Phys. 2020, 253, 123427.
24. Lemine, A. S.; El-Makaty, F. M.; Al-Ghanim, H. A.; Youssef, K. M. Experimental and modeling analysis of p-type Bi0.4Sb1.6Te3 and graphene nanocomposites. J. Mater. Res. Technol. 2022, 16, 1702-12.
25. Amin, A.; Huang, R.; Newbrook, D.; et al. Screen-printed bismuth telluride nanostructured composites for flexible thermoelectric applications. J. Phys. Energy. 2022, 4, 024003.
26. Liang, J.; Shi, X.; Peng, Y.; et al. Synergistic effect of band and nanostructure engineering on the boosted thermoelectric performance of n-type Mg3+δ(Sb, Bi)2 Zintls. Adv. Energy. Mater. 2022, 12, 2201086.
27. Imasato, K.; Fu, C.; Pan, Y.; et al. Metallic n-type Mg3Sb2 single crystals demonstrate the absence of ionized impurity scattering and enhanced thermoelectric performance. Adv. Mater. 2020, 32, e1908218.
28. Varghese, T.; Dun, C.; Kempf, N.; et al. Flexible thermoelectric devices of ultrahigh power factor by scalable printing and interface engineering. Adv. Funct. Mater. 2020, 30, 1905796.
29. Pandit, A.; Haleoot, R.; Hamad, B. Structural, electronic and thermoelectric properties of Pb1-xSnxTe alloys. J. Electron. Mater. 2020, 49, 586-92.
30. Kungumadevi, L.; Sathyamoorthy, R. Structural, electrical, and optical properties of PbTe thin films prepared by simple flash evaporation method. Adv. Condens. Matter. Phys. 2012, 2012, 1-5.
31. Norimasa, O.; Chiba, T.; Hase, M.; Komori, T.; Takashiri, M. Improvement of thermoelectric properties of flexible Bi2Te3 thin films in bent states during sputtering deposition and post-thermal annealing. J. Alloys. Compd. 2022, 898, 162889.
32. Park, D.; Park, S.; Jeong, K.; Jeong, H. S.; Song, J. Y.; Cho, M. H. Thermal and electrical conduction of single-crystal Bi2Te3 nanostructures grown using a one step process. Sci. Rep. 2016, 6, 19132.
33. Sun, Z.; Cheng, K.; Lin, S.; et al. Stoichiometric effect of Sb2Te3 thin film on thermoelectric property. ACS. Appl. Energy. Mater. 2022, 5, 7026-33.
34. Endo, R.; Maeda, S.; Jinnai, Y.; et al. Electric resistivity measurements of Sb2Te3 and Ge2Sb2Te5 melts using four-terminal method. Jpn. J. Appl. Phys. 2010, 49, 065802.
35. Liu, Z.; Zhu, J.; Tong, X.; Niu, S.; Zhao, W. A review of CoSb3-based skutterudite thermoelectric materials. J. Adv. Ceram. 2020, 9, 647-73.
36. Bourgès, C.; Zhang, W.; Raut, K. K.; et al. Investigation of Mn single and Co-doping in thermoelectric CoSb3-skutterudite: a way toward a beneficial composite effect. ACS. Appl. Energy. Mater. 2023, 6, 9646-56.
37. Lin, J.; Ma, L.; Liu, Q.; et al. Continuous phase transition in thermoelectric Zn4Sb3. Mater. Today. Energy. 2021, 21, 100787.
38. Zou, T.; Qin, X.; Zhang, Y.; et al. Enhanced thermoelectric performance of β-Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering. Sci. Rep. 2015, 5, 17803.
39. Fatima, K.; Noor, H.; Ali, A.; Monakhov, E.; Asghar, M. Annealing effect on seebeck coefficient of SiGe thin films deposited on quartz substrate. Coatings 2021, 11, 1435.
40. Fan, Z.; Liang, J.; Chen, J.; et al. Realizing high thermoelectric performance for p-type SiGe in medium temperature region via TaC compositing. J. Materiomics. 2023, 9, 984-91.
41. Yamanaka, S.; Kosuga, A.; Kurosaki, K. Thermoelectric properties of Tl9BiTe6. J. Alloys. Compd. 2003, 352, 275-8.
42. Lekbir, A.; Meddad, M. A. E.; Benhadouga, S.; Khenfer, R. Higher-efficiency for combined photovoltaic-thermoelectric solar power generation. Int. J. Green. Energy. 2019, 16, 371-7.
43. Vovchenko, L.; Matzui, L.; Zhuravkov, A.; Samchuk, A. Electrical resistivity of compacted TEG and TEG-Fe under compression. J. Phys. Chem. Solids. 2006, 67, 1168-72.
44. Hammond, G. P.; Jones, C. I. Embodied energy and carbon in construction materials. Proc. Inst. Civ. Eng. Energy. 2008, 161, 87-98.
45. William, D. C., Jr.; David, G. R. Materials science and engineering: an introduction, 10th edition; 2018. Available from: https://www.wiley.com/en-us/Materials+Science+and+Engineering%3A+An+Introduction%2C+10th+Edition-p-9781119405498 [Last accessed on 12 May 2025].
46. Ashby, M. F. Materials and the environment: eco-informed material choice. Elsevier; 2012. Available from: https://www.sciencedirect.com/book/9780123859716/materials-and-the-environment [Last accessed on 14 May 2025].
47. Schivley, G.; Ingwersen, W. W.; Marriott, J.; Hawkins, T. R.; Skone, T. J. Identifying/quantifying environmental trade-offs inherent in GHG reduction strategies for coal-fired power. Environ. Sci. Technol. 2015, 49, 7562-70.
48. Jeong, B.; Jeon, H.; Kim, S.; Kim, J.; Zhou, P. Evaluation of the lifecycle environmental benefits of full battery powered ships: comparative analysis of marine diesel and electricity. J. Mar. Sci. Eng. 2020, 8, 580.
49. Wang, X.; Ting, D. S.; Henshaw, P. Mutation particle swarm optimization (M-PSO) of a thermoelectric generator in a multi-variable space. Energy. Convers. Manag. 2020, 224, 113387.
50. Xu, G.; Cui, Q.; Shi, X.; et al. Particle swarm optimization based on dimensional learning strategy. Swarm. Evol. Comput. 2019, 45, 33-51.
51. Ashby, M.; Melia, H.; Figuerola, M.; Gorsse, S.; Philips, L. The CES EduPack materials science and engineering package. 2018. Available from: https://www.researchgate.net/profile/Hannah-Melia/publication/331983339_The_CES_EduPack_Materials_Science_and_Engineering_Package/links/5c98f51f45851506d72bab88/The-CES-EduPack-Materials-Science-and-Engineering-Package.pdf [Last accessed on 14 May 2025].
52. Embodied energy. Available from: https://www.yourhome.gov.au/materials/embodied-energy [Last accessed on 12 May 2025].
53. UNEP. Environmental risks and challenges of anthropogenic metals flows and cycles; 2013. Available from: https://www.yourhome.gov.au/materials/embodied-energy [Last accessed on 14 May 2025].