REFERENCES

1. Ji, X.; Nazar, L. F. Advances in Li-S batteries. J. Mater. Chem. 2010, 20, 9821.

2. Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751-87.

3. Yamin, H.; Gorenshtein, A.; Penciner, J.; Sternberg, Y.; Peled, E. Lithium sulfur battery - oxidation reduction-mechanisms of polysulfides in Thf solutions. J. Electrochem. Soc. 1988, 135, 1045-8.

4. Shim, J.; Striebel, K. A.; Cairns, E. J. The lithium/sulfur rechargeable cell: effects of electrode composition and solvent on cell performance. J. Electrochem. Soc. 2002, 149, A1321.

5. Sakuda, A.; Hayashi, A.; Tatsumisago, M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci. Rep. 2013, 3, 2261.

6. Fujita, Y.; Münch, K.; Asakura, T.; et al. Dynamic volume change of Li2S-based active material and the influence of stacking pressure on capacity in all-solid-state batteries. Chem. Mater. 2024, 36, 7533-40.

7. Kamaya, N.; Homma, K.; Yamakawa, Y.; et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682-6.

8. Kato, Y.; Hori, S.; Saito, T.; et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy. 2016, 1, 201630.

9. Li, Y.; Song, S.; Kim, H.; et al. A lithium superionic conductor for millimeter-thick battery electrode. Science 2023, 381, 50-3.

10. Boulineau, S.; Courty, M.; Tarascon, J.; Viallet, V. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid. State. Ion. 2012, 221, 1-5.

11. Yang, X.; Luo, J.; Sun, X. Towards high-performance solid-state Li-S batteries: from fundamental understanding to engineering design. Chem. Soc. Rev. 2020, 49, 2140-95.

12. Zhang, W.; Leichtweiß, T.; Culver, S. P.; et al. The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS. Appl. Mater. Interfaces. 2017, 9, 35888-96.

13. Strauss, F.; Stepien, D.; Maibach, J.; et al. Influence of electronically conductive additives on the cycling performance of argyrodite-based all-solid-state batteries. RSC. Adv. 2020, 10, 1114-9.

14. Walther, F.; Randau, S.; Schneider, Y.; et al. Influence of carbon additives on the decomposition pathways in cathodes of lithium thiophosphate-based all-solid-state batteries. Chem. Mater. 2020, 32, 6123-36.

15. Fang, R.; Liu, Y.; Li, Y.; Manthiram, A.; Goodenough, J. B. Achieving stable all-solid-state lithium-metal batteries by tuning the cathode-electrolyte interface and ionic/electronic transport within the cathode. Mater. Today. 2023, 64, 52-60.

16. Balach, J.; Linnemann, J.; Jaumann, T.; Giebeler, L. Metal-based nanostructured materials for advanced lithium-sulfur batteries. J. Mater. Chem. A. 2018, 6, 23127-68.

17. Li, X.; Sun, X.; Xiao, B.; Wang, D.; Liang, J. Inorganic polysulfide chemistries for better energy storage systems. Acc. Chem. Res. 2023, 56, 3547-57.

18. Sakuda, A. Metal polysulfides as high capacity electrode active materials - toward superior secondary batteries based on sulfur chemistry. Electrochemistry 2023, 91, 102003.

19. Kawasaki, Y.; Tsukasaki, H.; Ayama, T.; et al. Synthesis and electrochemical properties of Li3CuS2 as a positive electrode material for all-solid-state batteries. ACS. Appl. Energy. Mater. 2021, 4, 20-4.

20. Otoyama, M.; Takeuchi, T.; Taguchi, N.; Kuratani, K.; Sakaebe, H. Mechanochemical synthesis and electrochemical properties of LixVSy positive electrodes for all-solid-state batteries. ECS. Adv. 2023, 2, 010501.

21. Ji, Q.; Li, C.; Wang, J.; et al. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano. Lett. 2017, 17, 4908-16.

22. Cai, L.; Zhang, Q.; Mwizerwa, J. P.; et al. Highly crystalline layered VS2 nanosheets for all-solid-state lithium batteries with enhanced electrochemical performances. ACS. Appl. Mater. Interfaces. 2018, 10, 10053-63.

23. Xu, S.; Kwok, C. Y.; Zhou, L.; Zhang, Z.; Kochetkov, I.; Nazar, L. F. A high capacity all solid-state Li-sulfur battery enabled by conversion-intercalation hybrid cathode architecture. Adv. Funct. Mater. 2021, 31, 2004239.

24. Shigedomi, T.; Fujita, Y.; Kishi, T.; et al. Li2S-V2S3 -LiI bifunctional material as the positive electrode in the all-solid-state Li/S battery. Chem. Mater. 2022, 34, 9745-52.

25. Kwok, C. Y.; Xu, S.; Kochetkov, I.; Zhou, L.; Nazar, L. F. High-performance all-solid-state Li2S batteries using an interfacial redox mediator. Energy. Environ. Sci. 2023, 16, 610-8.

26. Izumi, F.; Momma, K. Three-dimensional visualization in powder diffraction. Solid. State. Phenomen. 2007, 130, 15-20.

27. Nakanishi, K.; Yagi, S.; Ohta, T. XAFS measurements under atmospheric pressure in the soft X-ray region. Aip. Conf. Proc. 2010, 1234, 931-4.

28. Kiguchi, M.; Yokoyama, T.; Matsumura, D.; Kondoh, H.; Ohta, T.; Kitajima, Y. Interface structure of alkali-halide heteroepitaxial films studied by X-ray-absorption fine structure. Phys. Rev. B. 1999, 60, 16205-10.

29. Han, F.; Yue, J.; Fan, X.; et al. High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano. Lett. 2016, 16, 4521-7.

30. Gamo, H.; Hikima, K.; Matsuda, A. Understanding decomposition of electrolytes in all-solid-state lithium-sulfur batteries. Chem. Mater. 2022, 34, 10952-63.

31. Kim, J. T.; Rao, A.; Nie, H. Y.; et al. Manipulating Li2S2/Li2S mixed discharge products of all-solid-state lithium sulfur batteries for improved cycle life. Nat. Commun. 2023, 14, 6404.

32. Sun, Z.; Lai, Y.; Lv, N.; et al. Insights on the properties of the O-doped argyrodite sulfide solid electrolytes (Li6PS5-xClOx, x=0-1). ACS. Appl. Mater. Interfaces. 2021, 13, 54924-35.

33. Murphy, D. W.; Cros, C.; Di Salvo, F. J.; Waszczak, J. V. Preparation and properties of LixVS2 (0 .ltoreq. x .ltoreq. 1). Inorg. Chem. 1977, 16, 3027-31.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/