REFERENCES
1. Wang, P.; Xi, B.; Huang, M.; Chen, W.; Feng, J.; Xiong, S. Emerging catalysts to promote kinetics of lithium-sulfur batteries. Adv. Energy. Mater. 2021, 11, 2002893.
2. Chung, S. H.; Manthiram, A. Current status and future prospects of metal-sulfur batteries. Adv. Mater. 2019, 31, e1901125.
3. Evers, S.; Nazar, L. F. New approaches for high energy density lithium-sulfur battery cathodes. Acc. Chem. Res. 2013, 46, 1135-43.
4. Xia, S.; Xu, X.; Wu, W.; et al. Advancements in functionalized high-performance separators for lithium-sulfur batteries. Mater. Sci. Eng. R. Rep. 2025, 163, 100924.
5. Kamaya, N.; Homma, K.; Yamakawa, Y.; et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682-6.
6. Wang, J.; Li, G.; Luo, D.; et al. Engineering the conductive network of metal oxide-based sulfur cathode toward efficient and longevous lithium-sulfur batteries. Adv. Energy. Mater. 2020, 10, 2002076.
7. He, X.; Bresser, D.; Passerini, S.; et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 2021, 6, 1036-52.
8. Guo, Y.; Niu, Q.; Pei, F.; et al. Interface engineering toward stable lithium-sulfur batteries. Energy. Environ. Sci. 2024, 17, 1330-67.
9. Qu, Z.; Zhang, X.; Xiao, R.; Sun, Z.; Li, F. Application of organosulfur compounds in lithium-sulfur batteries. Acta. Phys. Chim. Sin. 2023, 39, 2301019.
10. Bi, C. X.; Yao, N.; Li, X. Y.; et al. Unveiling the reaction mystery between lithium polysulfides and lithium metal anode in lithium-sulfur batteries. Adv. Mater. 2024, 36, e2411197.
11. Cheng, X.; Huang, J.; Zhang, Q.; Peng, H.; Zhao, M.; Wei, F. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries. Nano. Energy. 2014, 4, 65-72.
12. Fang, R.; Chen, K.; Yin, L.; Sun, Z.; Li, F.; Cheng, H. M. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 2019, 31, e1800863.
13. Qiu, Y.; Li, W.; Zhao, W.; et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano. Lett. 2014, 14, 4821-7.
14. Li, G.; Sun, J.; Hou, W.; Jiang, S.; Huang, Y.; Geng, J. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries. Nat. Commun. 2016, 7, 10601.
15. Zhou, G.; Chen, H.; Cui, Y. Formulating energy density for designing practical lithium-sulfur batteries. Nat. Energy. 2022, 7, 312-9.
16. Li, J.; Gao, L.; Pan, F.; et al. Engineering strategies for suppressing the shuttle effect in lithium-sulfur batteries. Nanomicro. Lett. 2023, 16, 12.
17. Li, S.; Wang, W.; Duan, H.; Guo, Y. Recent progress on confinement of polysulfides through physical and chemical methods. J. Energy. Chem. 2018, 27, 1555-65.
18. Lian, Z.; Ma, L.; Wu, H.; et al. Accelerating sulfur redox kinetics by rare earth single-atom electrocatalysts toward efficient lithium-sulfur batteries. Appl. Catal. B. Environ. Energy. 2025, 361, 124661.
19. Huang, Y.; Lin, L.; Zhang, C.; et al. Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries. Adv. Sci. 2022, 9, e2106004.
20. Wang, P.; Xi, B.; Xiong, S. Insights into the optimization of catalytic active sites in lithium-sulfur batteries. Acc. Chem. Res. 2024, 57, 2093-104.
21. Wang, B.; Ren, Y.; Zhu, Y.; et al. Construction of Co3O4/ZnO heterojunctions in hollow N-doped carbon nanocages as microreactors for lithium-sulfur full batteries. Adv. Sci. 2023, 10, e2300860.
22. Liu, L.; Yan, M.; Zhao, X.; Pan, H. A novel pathway for sustained sulfides conversion via electrocatalyst-modified separator in lithium-sulfur batteries. Nano. Energy. 2024, 130, 110122.
23. Yang, M.; Liu, P.; Qu, Z.; et al. Nitrogen-vacancy-regulated Mo2N quantum dots electrocatalyst enables fast polysulfides redox for high-energy-density lithium-sulfur batteries. Nano. Energy. 2022, 104, 107922.
24. Yuan, H.; Zheng, J.; Lu, G.; et al. Formation of 2D amorphous lithium sulfide enabled by Mo2C clusters loaded carbon scaffold for high-performance lithium sulfur batteries. Adv. Mater. 2024, 36, e2400639.
25. He, J.; Bhargav, A.; Manthiram, A. Molybdenum boride as an efficient catalyst for polysulfide redox to enable high-energy-density lithium-sulfur batteries. Adv. Mater. 2020, 32, e2004741.
26. Chen, L.; Cao, G.; Li, Y.; et al. A review on engineering transition metal compound catalysts to accelerate the redox kinetics of sulfur cathodes for lithium-sulfur batteries. Nanomicro. Lett. 2024, 16, 97.
27. Pan, H.; Cheng, Z.; Zhou, Z.; et al. Boosting lean electrolyte lithium-sulfur battery performance with transition metals: a comprehensive review. Nanomicro. Lett. 2023, 15, 165.
28. Wu, J.; Ye, T.; Wang, Y.; et al. Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li-S batteries. ACS. Nano. 2022, 16, 15734-59.
29. Zhang, J.; Xie, Z.; Xi, W.; et al. 3D printing of tungstate anion modulated 1T-MoS2 composite cathodes for high-performance lithium-sulfur batteries. Adv. Energy. Mater. 2024, 14, 2401792.
30. Li, H.; Song, Y.; Xi, K.; et al. Sulfur vacancies in Co9S8-x/N-doped graphene enhancing the electrochemical kinetics for high-performance lithium-sulfur batteries. J. Mater. Chem. A. 2021, 9, 10704-13.
31. Liu, G.; Zeng, Q.; Fan, Z.; et al. Boosting sulfur catalytic kinetics by defect engineering of vanadium disulfide for high-performance lithium-sulfur batteries. Chem. Eng. J. 2022, 448, 137683.
32. Wang, J.; Zhao, Y.; Li, G.; et al. Aligned sulfur-deficient ZnS1-x nanotube arrays as efficient catalyzer for high-performance lithium/sulfur batteries. Nano. Energy. 2021, 84, 105891.
33. Zhong, Y.; Yin, L.; He, P.; Liu, W.; Wu, Z.; Wang, H. Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries. J. Am. Chem. Soc. 2018, 140, 1455-9.
34. Chen, X.; Wang, Z.; Wei, Y.; et al. High phase-purity 1T-MoS2 ultrathin nanosheets by a spatially confined template. Angew. Chem. Int. Ed. 2019, 58, 17621-4.
35. Wang, J.; Cao, G.; Duan, R.; Li, X.; Li, X. Advances in single metal atom catalysts enhancing kinetics of sulfur cathode. Acta. Phys. Chim. Sin. 2023, 39, 2212005.
36. Hu, S.; Wang, T.; Lu, B.; et al. Ionic-liquid-assisted synthesis of FeSe-MnSe heterointerfaces with abundant Se vacancies embedded in N,B co-doped hollow carbon microspheres for accelerating the sulfur reduction reaction. Adv. Mater. 2022, 34, e2204147.
37. Wu, X.; Xie, R.; Cai, D.; et al. Engineering defect-rich bimetallic telluride with dense heterointerfaces for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2024, 34, 2315012.
38. Li, H.; Chen, S.; Jia, X.; et al. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting. Nat. Commun. 2017, 8, 15377.
39. Qi, K.; Cui, X.; Gu, L.; et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 2019, 10, 5231.
40. Yu, Y.; Nam, G. H.; He, Q.; et al. High phase-purity 1T'-MoS2- and 1T'-MoSe2-layered crystals. Nat. Chem. 2018, 10, 638-43.
41. Shi, Z.; Ding, Y.; Zhang, Q.; Sun, J. Electrocatalyst modulation toward bidirectional sulfur redox in Li-S batteries: from strategic probing to mechanistic understanding. Adv. Energy. Mater. 2022, 12, 2201056.
42. Ye, Z.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. Synergetic anion vacancies and dense heterointerfaces into bimetal chalcogenide nanosheet arrays for boosting electrocatalysis sulfur conversion. Adv. Mater. 2022, 34, e2109552.
43. Li, G. R.; Gao, X. P. Low-cost counter-electrode materials for dye-sensitized and perovskite solar cells. Adv. Mater. 2020, 32, e1806478.
44. Deng, T.; Wang, J.; Zhao, H.; et al. Dynamically regulating polysulfide degradation via organic sulfur electrolyte additives in lithium-sulfur batteries. Adv. Energy. Mater. 2024, 14, 2402319.
45. Li, Z.; Li, P.; Meng, X.; Lin, Z.; Wang, R. The interfacial electronic engineering in binary sulfiphilic cobalt boride heterostructure nanosheets for upgrading energy density and longevity of lithium-sulfur batteries. Adv. Mater. 2021, 33, e2102338.
46. Wang, J.; Yi, S.; Liu, J.; et al. Suppressing the shuttle effect and dendrite growth in lithium-sulfur batteries. ACS. Nano. 2020, 14, 9819-31.
47. Zhang, L.; Liu, D.; Muhammad, Z.; et al. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv. Mater. 2019, 31, e1903955.
48. Li, H.; Xi, K.; Wang, W.; Liu, S.; Li, G.; Gao, X. Quantitatively regulating defects of 2D tungsten selenide to enhance catalytic ability for polysulfide conversion in a lithium sulfur battery. Energy. Storage. Mater. 2022, 45, 1229-37.
50. Wang, M.; Fan, L.; Sun, X.; et al. Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li-S battery. ACS. Energy. Lett. 2020, 5, 3041-50.
51. Liu, Y. T.; Liu, S.; Li, G. R.; Yan, T. Y.; Gao, X. P. High volumetric energy density sulfur cathode with heavy and catalytic metal oxide host for lithium-sulfur battery. Adv. Sci. 2020, 7, 1903693.
52. Zhang, G.; Feng, L.; Yu, J.; Wang, S. Full potential catalysis of Co0.4Ni1.6P-V/CNT with phosphorus vacancies for Li2S1-2 deposition/decomposition and S8/Li2Sn (3 ≤ n ≤ 8) conversion in Li-S batteries. ACS. Appl. Mater. Interfaces. 2023, 15, 49170-80.
53. Hu, S.; Huang, X.; Zhang, L.; et al. Vacancy-defect topological insulators Bi2Te3-x embedded in N and B Co-doped 1D carbon nanorods using ionic liquid dopants for kinetics-enhanced Li-S batteries. Adv. Funct. Mater. 2023, 33, 2214161.