REFERENCES
1. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.
2. Gur, I.; Sawyer, K.; Prasher, R. Searching for a better thermal battery. Science 2012, 335, 1454-5.
3. Gemma, A.; Gotsmann, B. A roadmap for molecular thermoelectricity. Nat. Nanotechnol. 2021, 16, 1299-301.
4. He, P.; Jang, J.; Kang, H.; Yoon, H. J. Thermoelectricity in molecular tunnel junctions. Chem. Rev. 2025, 125, 2953-3004.
5. Reddy, P.; Jang, S. Y.; Segalman, R. A.; Majumdar, A. Thermoelectricity in molecular junctions. Science 2007, 315, 1568-71.
6. Leblanc, S.; Yee, S. K.; Scullin, M. L.; Dames, C.; Goodson, K. E. Material and manufacturing cost considerations for thermoelectrics. Renew.. Sustain. Energy. Rev. 2014, 32, 313-27.
7. Hao, F.; Qiu, P.; Tang, Y.; et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy. Environ. Sci. 2016, 9, 3120-7.
8. Zhu, B.; Liu, X.; Wang, Q.; et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials. Energy. Environ. Sci. 2020, 13, 2106-14.
9. Zheng, Z.; Shi, X.; Ao, D.; et al. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nat. Sustain. 2023, 6, 180-91.
10. Chen, Y. X.; Shi, X. L.; Zhang, J. Z.; et al. Deviceization of high-performance and flexible Ag2Se films for electronic skin and servo rotation angle control. Nat. Commun. 2024, 15, 8356.
11. Yang, D.; Shi, X. L.; Li, M.; et al. Flexible power generators by Ag2Se thin films with record-high thermoelectric performance. Nat. Commun. 2024, 15, 923.
12. Dupont, M. F.; MacFarlane, D. R.; Pringle, J. M. Thermo-electrochemical cells for waste heat harvesting - progress and perspectives. Chem. Commun. 2017, 53, 6288-302.
13. Jiao, N.; Abraham, T. J.; Macfarlane, D. R.; Pringle, J. M. Ionic liquid electrolytes for thermal energy harvesting using a cobalt redox couple. J. Electrochem. Soc. 2014, 161, D3061-5.
14. Sun, S.; Li, M.; Shi, X.; Chen, Z. Advances in ionic thermoelectrics: from materials to devices. Adv. Energy. Mater. 2023, 13, 2203692.
15. Lu, X.; Mo, Z.; Liu, Z.; et al. Robust, efficient, and recoverable thermocells with zwitterion-boosted hydrogel electrolytes for energy-autonomous and wearable sensing. Angew. Chem. Int. Ed. 2024, 63, 202405357.
16. Ding, Z.; Du, C.; Long, W.; et al. Thermoelectrics and thermocells for fire warning applications. Sci. Bull. 2023, 68, 3261-77.
17. Wang, H.; Zhuang, X.; Xie, W.; et al. Thermosensitive-CsI3-crystal-driven high-power I-/I3- thermocells. Cell. Rep. Phys. Sci. 2022, 3, 100737.
18. Yu, B.; Xiao, H.; Zeng, Y.; et al. Cost-effective n-type thermocells enabled by thermosensitive crystallizations and 3D multi-structured electrodes. Nano. Energy. 2022, 93, 106795.
19. Abraham, T. J.; Macfarlane, D. R.; Pringle, J. M. High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting. Energy. Environ. Sci. 2013, 6, 2639-45.
20. Zinovyeva, V.; Nakamae, S.; Bonetti, M.; Roger, M. Enhanced thermoelectric power in ionic liquids. ChemElectroChem 2014, 1, 426-30.
21. Anari, E. H.; Romano, M.; Teh, W. X.; et al. Substituted ferrocenes and iodine as synergistic thermoelectrochemical heat harvesting redox couples in ionic liquids. Chem. Commun. 2016, 52, 745-8.
22. Lazar, M. A.; Al-Masri, D.; MacFarlane, D. R.; Pringle, J. M. Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid-solvent mixtures. Phys. Chem. Chem. Phys. 2016, 18, 1404-10.
23. Zhou, H.; Yamada, T.; Kimizuka, N. Supramolecular Thermo-electrochemical cells: enhanced thermoelectric performance by host-guest complexation and salt-induced crystallization. J. Am. Chem. Soc. 2016, 138, 10502-7.
24. Kim, T.; Lee, J. S.; Lee, G.; et al. High thermopower of ferri/ferrocyanide redox couple in organic-water solutions. Nano. Energy. 2017, 31, 160-7.
25. Duan, J.; Feng, G.; Yu, B.; et al. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nat. Commun. 2018, 9, 5146.
26. Yu, B.; Duan, J.; Cong, H.; et al. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science 2020, 370, 342-6.
27. Wang, Y.; Zhang, Y.; Xin, X.; et al. In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Science 2023, 381, 291-6.
28. Yu, B.; Yang, W.; Li, J.; et al. Heat-triggered high-performance thermocells enable a self-powered forest fire alarm. J. Mater. Chem. A. 2021, 9, 26119-26.
29. Kraemer, D.; Chen, G. A simple differential steady-state method to measure the thermal conductivity of solid bulk materials with high accuracy. Rev. Sci. Instrum. 2014, 85, 025108.
30. Jannot, Y.; Degiovanni, A. Steady-state methods. In Thermal Properties Measurement of Materials, 1st ed.; ISTE Ltd and John Wiley & Sons, Inc., 2018; pp 83-116.
31. Zhang, D.; Mao, Y.; Ye, F.; et al. Stretchable thermogalvanic hydrogel thermocell with record-high specific output power density enabled by ion-induced crystallization. Energy. Environ. Sci. 2022, 15, 2974-82.
32. Liu, L.; Zhang, D.; Bai, P.; et al. Strong tough thermogalvanic hydrogel thermocell with extraordinarily high thermoelectric performance. Adv. Mater. 2023, 35, e2300696.
33. Elgrishi, N.; Rountree, K. J.; Mccarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 2018, 95, 197-206.
34. Cui, Y.; Tan, S.; Luo, Z.; et al. Synthesis of cysteamine hydrochloride by high pressure acidolysis of 2-mercaptothiazoline. Asian. J. Chem. 2010, 22, 3221-7. https://asianpubs.org/index.php/ajchem/article/view/11535 (accessed 2025-06-12).
35. Dénès, F.; Pichowicz, M.; Povie, G.; Renaud, P. Thiyl radicals in organic synthesis. Chem. Rev. 2014, 114, 2587-693.
36. Paulsen, C. E.; Carroll, K. S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem. Rev. 2013, 113, 4633-79.
37. Nekrassova, O.; Allen, G.; Lawrence, N.; Jiang, L.; Jones, T.; Compton, R. The oxidation of cysteine by aqueous ferricyanide: a kinetic study using boron doped diamond electrode voltammetry. Electroanalysis , 14, 1464-9.
38. Romano, M. S.; Li, N.; Antiohos, D.; et al. Carbon nanotube - reduced graphene oxide composites for thermal energy harvesting applications. Adv. Mater. 2013, 25, 6602-6.
39. Laschuk, N. O.; Easton, E. B.; Zenkina, O. V. Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC. Adv. 2021, 11, 27925-36.
40. Quickenden, T. I.; Mua, Y. A Review of power generation in aqueous thermogalvanic cells. J. Electrochem. Soc. 1995, 142, 3985.
41. Hu, R.; Cola, B. A.; Haram, N.; et al. Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano. Lett. 2010, 10, 838-46.
42. Im, H.; Kim, T.; Song, H.; et al. High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes. Nat. Commun. 2016, 7, 10600.
43. Qian, W.; Cao, M.; Xie, F.; Dong, C. Thermo-electrochemical cells based on carbon nanotube electrodes by electrophoretic deposition. Nano-Micro. Lett. 2016, 8, 240-6.
44. Zhang, L.; Kim, T.; Li, N.; et al. High power density electrochemical thermocells for inexpensively harvesting low-grade thermal energy. Adv. Mater. 2017, 29, 1605652.
45. Li, G.; Dong, D.; Hong, G.; Yan, L.; Zhang, X.; Song, W. High-Efficiency cryo-thermocells assembled with anisotropic holey graphene aerogel electrodes and a eutectic redox electrolyte. Adv. Mater. 2019, 31, 1901403.
46. Zhao, L. D.; Lo, S. H.; Zhang, Y.; et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373-7.
47. Burkov, A. T.; Fedotov, A. I.; Novikov, S. V. Methods and apparatus for measuring thermopower and electrical conductivity of thermoelectric materials at high temperatures. In Thermoelectrics for power generation - a look at trends in the technology; Skipidarov, S.; Nikitin, M.; Eds.; InTech, 2016; pp 351-87.
48. Wang, H.; Chu, W.; Chen, G. A brief review on measuring methods of thermal conductivity of organic and hybrid thermoelectric materials. Adv. Elect. Mater. 2019, 5, 1900167.
49. Wei, T.; Guan, M.; Yu, J.; Zhu, T.; Chen, L.; Shi, X. How to measure thermoelectric properties reliably. Joule 2018, 2, 2183-8.
50. Jiang, L.; Kirihara, K.; Nandal, V.; et al. Thermoelectrochemical cells based on ferricyanide/ferrocyanide/guanidinium: application and challenges. ACS. Appl. Mater. Interfaces. , 2022, 22921-8.
51. Zhou, H.; Inoue, H.; Ujita, M.; Yamada, T. Advancement of electrochemical thermoelectric conversion with molecular technology. Angew. Chem. Int. Ed. 2023, 62, e202213449.
52. Wang, W. T.; Holzhey, P.; Zhou, N.; et al. Water- and heat-activated dynamic passivation for perovskite photovoltaics. Nature 2024, 632, 294-300.