REFERENCES
1. Espegren, K.; Damman, S.; Pisciella, P.; Graabak, I.; Tomasgard, A. The role of hydrogen in the transition from a petroleum economy to a low-carbon society. Int. J. Hydrogen. Energy. 2021, 46, 23125-38.
2. Yao, Z.; Deng, H.; Dong, J.; et al. On explosion characteristics of premixed syngas/air mixtures with different hydrogen volume fractions and ignition positions. Fuel 2021, 288, 119619.
3. Case study: power plant hydrogen explosion. 2022. Available from: https://wha-international.com/case-study-power-plant-hydrogen-explosion/ [Last accessed on 30 May 2025].
4. Hydrogen refuelling plant explodes in Norway. Available from: https://ctif.org/news/hydrogen-refuelling-plant-explodes-norway [Last accessed on 30 May 2025].
5. Student killed in chemistry lab blast. 2025. Available from: https://www.chinadaily.com.cn/china/2015-12/19/content_22750853.htm [Last accessed on 30 May 2025].
6. Hydrogen blast led to deaths at US silicones plant. 2019. Available from: https://cen.acs.org/safety/industrial-safety/Hydrogen-blast-led-deaths-US/97/web/2019/12 [Last accessed on 30 May 2025].
7. Hydrogen tank explosion kills 2 in Gangneung. 2019. Available from: https://www.koreatimes.co.kr/www/nation/2024/02/113_269400.html [Last accessed on 30 May 2025].
8. Moradi, R.; Groth, K. M. Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis. Int. J. Hydrogen. Energy. 2019, 44, 12254-69.
9. Durbin, D.; Malardier-Jugroot, C. Review of hydrogen storage techniques for on board vehicle applications. Int. J. Hydrogen. Energy. 2013, 38, 14595-617.
10. Wang, Z.; Wang, Y.; Afshan, S.; Hjalmarsson, J. A review of metallic tanks for H2 storage with a view to application in future green shipping. Int. J. Hydrogen. Energy. 2021, 46, 6151-79.
11. Hassan, I.; Ramadan, H. S.; Saleh, M. A.; Hissel, D. Hydrogen storage technologies for stationary and mobile applications: review, analysis and perspectives. Renew. Sustain. Energy. Rev. 2021, 149, 111311.
12. Park, W. S.; Yoo, S. W.; Kim, M. H.; Lee, J. M. Strain-rate effects on the mechanical behavior of the AISI 300 series of austenitic stainless steel under cryogenic environments. Mater. Des. 2010, 31, 3630-40.
13. Desisto, T. S.; Carr, L. C. Low temperature mechanical properties of 300 series stainless steel and titanium. In: Timmerhaus KD, editor. Advances in cryogenic engineering. Boston: Springer US; 1961. pp. 577-86.
14. Matsunaga, H.; Yoshikawa, M.; Kondo, R.; Yamabe, J.; Matsuoka, S. Slow strain rate tensile and fatigue properties of Cr-Mo and carbon steels in a 115 MPa hydrogen gas atmosphere. Int. J. Hydrogen. Energy. 2015, 40, 5739-48.
15. Yoon, S. J.; Lee, H. J.; Yoon, K. B.; Ma, Y. W.; Baek, U. B. Hydrogen damage in 34CrMo4 pressure vessel steel with high tensile strength. J. Mech. Sci. Technol. 2018, 32, 637-46.
16. Ritchie, R. O.; Parker, E. R.; Spencer, P. N.; Todd, J. A. A new series of advanced 3Cr-Mo-Ni steels for thick section pressure vessels in high temperature and pressure hydrogen service. J. Mater. Energy. Syst. 1984, 6, 151-62.
17. Zhu, Z.; Hu, Z.; Seet, H. L.; et al. Recent progress on the additive manufacturing of aluminum alloys and aluminum matrix composites: Microstructure, properties, and applications. Int. J. Mach. Tool. Manu. 2023, 190, 104047.
18. Verstraete, D.; Hendrick, P.; Pilidis, P.; Ramsden, K. Hydrogen fuel tanks for subsonic transport aircraft. Int. J. Hydrogen. Energy. 2010, 35, 11085-98.
19. Rometsch, P. A.; Zhu, Y.; Wu, X.; Huang, A. Review of high-strength aluminium alloys for additive manufacturing by laser powder bed fusion. Mater. Des. 2022, 219, 110779.
20. Laadel, N.; El Mansori, M.; Kang, N.; Marlin, S.; Boussant-Roux, Y. Permeation barriers for hydrogen embrittlement prevention in metals - A review on mechanisms, materials suitability and efficiency. Int. J. Hydrogen. Energy. 2022, 47, 32707-31.
21. Ohaeri, E.; Eduok, U.; Szpunar, J. Hydrogen related degradation in pipeline steel: a review. Int. J. Hydrogen. Energy. 2018, 43, 14584-617.
22. Lynch, S. P. 2 - Hydrogen embrittlement (HE) phenomena and mechanisms. Stress Corrosion Cracking. Elsevier; 2011. pp. 90-130.
23. Robertson, I. M.; Sofronis, P.; Nagao, A.; et al. Hydrogen embrittlement understood. Metall. Mater. Trans. B. 2015, 46, 1085-103.
24. Nagumo, M. Diffusion and transport of hydrogen. Fundamentals of hydrogen embrittlement. Singapore: Springer Nature; 2023. pp. 77-93.
25. Forcey, K.; Ross, D.; Simpson, J.; Evans, D. Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications. J. Nucl. Mater. 1988, 160, 117-24.
26. Ishikawa, T.; Mclellan, R. The diffusivity of hydrogen in aluminum. Acta. Metall. 1986, 34, 1091-5.
27. Bhadeshia, H. K. D. H. Prevention of hydrogen embrittlement in steels. ISIJ. Int. 2016, 56, 24-36.
28. Taxak, M.; Kumar, S.; Kalekar, B. B.; Krishnamurthy, N. Effect of nickel addition on the solubility of hydrogen in tantalum. Int. J. Hydrogen. Energy. 2013, 38, 7561-8.
29. Yan, E.; Sun, L.; Xu, F.; et al. Changes in microstructure, solidification path and hydrogen permeability of Nb-Hf-Co alloy by adjusting Hf/Co ratio. Int. J. Hydrogen. Energy. 2016, 41, 1391-400.
30. Saeki, Y.; Yamada, Y.; Ishikawa, K. Relationship between hydrogen permeation and microstructure in Nb-TiCo two-phase alloys. J. Alloys. Compd. 2015, 645, S32-5.
31. Kim, K. H.; Park, H. C.; Lee, J.; Cho, E.; Lee, S. M. Vanadium alloy membranes for high hydrogen permeability and suppressed hydrogen embrittlement. Scr. Mater. 2013, 68, 905-8.
32. Pfeil, L. B.; Carpenter, H. C. H. The effect of occluded hydrogen on the tensile strength of iron. Proc. R. Soc. Lond. A. 1926, 112, 182-95.
33. Beachem, C. D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”). Metall. Trans. 1972, 3, 441-55.
34. Depover, T.; Verbeken, K. The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-C-X alloys: an experimental proof of the HELP mechanism. Int. J. Hydrogen. Energy. 2018, 43, 3050-61.
35. Martin, M. L.; Dadfarnia, M.; Nagao, A.; Wang, S.; Sofronis, P. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials. Acta. Mater. 2019, 165, 734-50.
36. Dwivedi, S. K.; Vishwakarma, M. Hydrogen embrittlement in different materials: a review. Int. J. Hydrogen. Energy. 2018, 43, 21603-16.
37. Nagumo, M. Function of hydrogen in embrittlement of high-strength steels. ISIJ. Int. 2001, 41, 590-8.
38. Nagumo, M. Hydrogen related failure of steels - a new aspect. Mater. Sci. Technol. 2004, 20, 940-50.
39. Sakaki, K.; Kawase, T.; Hirato, M.; et al. The effect of hydrogen on vacancy generation in iron by plastic deformation. Scr. Mater. 2006, 55, 1031-4.
40. Wen, M.; Zhang, L.; An, B.; Fukuyama, S.; Yokogawa, K. Hydrogen-enhanced dislocation activity and vacancy formation during nanoindentation of nickel. Phys. Rev. B. 2009, 80, 094113.
41. Hou, J.; Kong, X. S.; Wu, X.; Song, J.; Liu, C. S. Predictive model of hydrogen trapping and bubbling in nanovoids in bcc metals. Nat. Mater. 2019, 18, 833-9.
42. Hickel, T.; Nazarov, R.; Mceniry, E. J.; Leyson, G.; Grabowski, B.; Neugebauer, J. Ab Initio based understanding of the segregation and diffusion mechanisms of hydrogen in steels. JOM 2014, 66, 1399-405.
43. Neeraj, T.; Srinivasan, R.; Li, J. Hydrogen embrittlement of ferritic steels: observations on deformation microstructure, nanoscale dimples and failure by nanovoiding. Acta. Mater. 2012, 60, 5160-71.
44. Barrera, O.; Bombac, D.; Chen, Y.; et al. Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum. J. Mater. Sci. 2018, 53, 6251-90.
45. Abohamzeh, E.; Salehi, F.; Sheikholeslami, M.; Abbassi, R.; Khan, F. Review of hydrogen safety during storage, transmission, and applications processes. J. Loss. Prev. Process. Ind. 2021, 72, 104569.
46. Li, H.; Cao, X.; Liu, Y.; et al. Safety of hydrogen storage and transportation: an overview on mechanisms, techniques, and challenges. Energy. Rep. 2022, 8, 6258-69.
47. Wang, C.; Zhao, L.; Qu, J.; Xiao, Y.; Deng, J.; Shu, C. Minireview on the leakage ignition and flame propagation characteristics of hydrogen: advances and perspectives. Energy. Fuels. 2023, 37, 5653-66.
48. Genovese, M.; Cigolotti, V.; Jannelli, E.; Fragiacomo, P. Current standards and configurations for the permitting and operation of hydrogen refueling stations. Int. J. Hydrogen. Energy. 2023, 48, 19357-71.
49. Schefer, R.; Houf, W.; Williams, T. Investigation of small-scale unintended releases of hydrogen: momentum-dominated regime. Int. J. Hydrogen. Energy. 2008, 33, 6373-84.
50. Veser, A.; Kuznetsov, M.; Fast, G.; et al. The structure and flame propagation regimes in turbulent hydrogen jets. Int. J. Hydrogen. Energy. 2011, 36, 2351-9.
51. Kotchourko, N.; Kuznetsov, M.; Kotchourko, A.; Grune, J.; Lelyakin, A.; Jordan, T. Concentration measurements in a round hydrogen jet using background oriented schlieren (BOS) technique. Int. J. Hydrogen. Energy. 2014, 39, 6201-9.
52. Swain, M.; Filoso, P.; Swain, M. An experimental investigation into the ignition of leaking hydrogen. Int. J. Hydrogen. Energy. 2007, 32, 287-95.
53. Houf, W.; Schefer, R. Analytical and experimental investigation of small-scale unintended releases of hydrogen. Int. J. Hydrogen. Energy. 2008, 33, 1435-44.
54. Han, S. H.; Chang, D.; Kim, J. S. Experimental investigation of highly pressurized hydrogen release through a small hole. Int. J. Hydrogen. Energy. 2014, 39, 9552-61.
55. Birch, A. D.; Hughes, D. J.; Swaffield, F. Velocity decay of high pressure jets. Combust. Sci. Technol. 1987, 52, 161-71.
56. Caramia, G.; Amirante, R.; De Palma, P. Unsteady RANS simulations of under-expanded hydrogen jets for internal combustion engines. Int. J. Hydrogen. Energy. 2024, 96, 849-59.
57. Ruggles, A.; Ekoto, I. Ignitability and mixing of underexpanded hydrogen jets. Int. J. Hydrogen. Energy. 2012, 37, 17549-60.
58. Crist, S.; Glass, D. R.; Sherman, P. M. Study of the highly underexpanded sonic jet. AIAA. J. 1966, 4, 68-71.
59. Velikorodny, A.; Kudriakov, S. Numerical study of the near-field of highly underexpanded turbulent gas jets. Int. J. Hydrogen. Energy. 2012, 37, 17390-9.
60. Mo, F.; Liu, B.; Wang, H.; She, X.; Teng, L.; Kang, X. Study on hydrogen dispersion in confined space with complex air supply and exhaust system. Int. J. Hydrogen. Energy. 2022, 47, 29131-47.
61. Han, H.; Chang, X.; Duan, P.; Li, Y.; Zhu, J.; Kong, Y. Study on the leakage and diffusion behavior of hydrogen-blended natural gas in utility tunnels. J. Loss. Prev. Proc. Ind. 2023, 85, 105151.
62. Baines, W. D.; Turner, J. S. Turbulent buoyant convection from a source in a confined region. J. Fluid. Mech. 1969, 37, 51-80.
64. Kumamoto, A.; Iseki, H.; Ono, R.; Oda, T. Measurement of minimum ignition energy in hydrogen-oxygen-nitrogen premixed gas by spark discharge. J. Phys. Conf. Ser. 2011, 301, 012039.
65. Wang, Z.; Li, S.; Jin, Z.; Li, Z.; Liu, Q.; Zhang, K. Oil and gas pathway to net-zero: review and outlook. Energy. Strategy. Rev. 2023, 45, 101048.
66. Kim, H. J.; Chung, S. H.; Sohn, C. H. Numerical calculation of minimum ignition energy for hydrogen and methane fuels. KSME. Int. J. 2004, 18, 838-46.
67. Klell, M.; Eichlseder, H.; Trattner, A. Internal combustion engines. Hydrogen in automotive engineering. Wiesbaden: Springer Fachmedien; 2023. pp. 193-249.
68. Ono, R.; Nifuku, M.; Fujiwara, S.; Horiguchi, S.; Oda, T. Minimum ignition energy of hydrogen-air mixture: effects of humidity and spark duration. J. Electrostat. 2007, 65, 87-93.
69. Lee, H. J.; Kim, Y. R.; Kim, S.; Jeung, I. Experimental investigation on the self-ignition of pressurized hydrogen released by the failure of a rupture disk through tubes. Proc. Combust. Inst. 2011, 33, 2351-8.
70. Wolański, P.; Wójcicki, S. Stabilization of coal dust-air mixture by bluff bodies. Symp. (Int). Combust. 1975, 15, 1295-302.
71. Grune, J.; Sempert, K.; Kuznetsov, M.; Jordan, T. Experimental study of ignited unsteady hydrogen releases from a high pressure reservoir. Int. J. Hydrogen. Energy. 2014, 39, 6176-83.
72. Kim, Y. R.; Lee, H. J.; Kim, S.; Jeung, I. A flow visualization study on self-ignition of high pressure hydrogen gas released into a tube. Proc. Combust. Inst. 2013, 34, 2057-64.
73. Don, W. G.; Robert, H. P. Perry's chemical engineers' handbook. McGraw-Hill Education: New York; 2008. Available from: https://www.accessengineeringlibrary.com/content/book/9780071422949 [Last accessed on 30 May 2025].
74. Merilo, E.; Groethe, M.; Adamo, R.; Schefer, R.; Houf, W.; Dedrick, D. Self-ignition of hydrogen releases through electrostatic discharge induced by entrained particulates. Int. J. Hydrogen. Energy. 2012, 37, 17561-70.
75. Imamura, T.; Mogi, T.; Wada, Y. Control of the ignition possibility of hydrogen by electrostatic discharge at a ventilation duct outlet. Int. J. Hydrogen. Energy. 2009, 34, 2815-23.
76. Yamada, E.; Kitabayashi, N.; Hayashi, A. K.; Tsuboi, N. Mechanism of high-pressure hydrogen auto-ignition when spouting into air. Int. J. Hydrogen. Energy. 2011, 36, 2560-6.
77. Wang, Z.; Pan, X.; Wang, Q.; et al. Experimental study on spontaneous ignition and flame propagation of high-pressure hydrogen release through tubes. Int. J. Hydrogen. Energy. 2019, 44, 22584-97.
78. Mogi, T.; Wada, Y.; Ogata, Y.; Koichi Hayashi, A. Self-ignition and flame propagation of high-pressure hydrogen jet during sudden discharge from a pipe. Int. J. Hydrogen. Energy. 2009, 34, 5810-6.
79. Wasim, M.; Djukic, M. B.; Ngo, T. D. Influence of hydrogen-enhanced plasticity and decohesion mechanisms of hydrogen embrittlement on the fracture resistance of steel. Eng. Fail. Anal. 2021, 123, 105312.
80. Li, P.; Duan, Q.; Zeng, Q.; Jin, K.; Chen, J.; Sun, J. Experimental study of spontaneous ignition induced by sudden hydrogen release through tubes with different shaped cross-sections. Int. J. Hydrogen. Energy. 2019, 44, 23821-31.
81. Duan, Q.; Xiao, H.; Gao, W.; Gong, L.; Sun, J. Experimental investigation of spontaneous ignition and flame propagation at pressurized hydrogen release through tubes with varying cross-section. J. Hazard. Mater. 2016, 320, 18-26.
82. Rubtsov, N. M.; Chernysh, V. I.; Tsvetkov, G. I.; Troshin, K. Y.; Shamshin, I. O. Ignition of hydrogen-methane-air mixtures over Pd foil at atmospheric pressure. Mendeleev. Commun. 2019, 29, 469-71.
83. Song, C.; Jiang, H.; Gao, W. High temperature generated by sliding metal friction and its effectiveness as an ignition source for hydrogen. J. Loss. Prev. Proc. Ind. 2022, 79, 104833.
84. Mueller, M. A.; Kim, T. J.; Yetter, R. A.; Dryer, F. L. Flow reactor studies and kinetic modeling of the H2/O2 reaction. Int. J. Chem. Kinet. 1999, 31, 113-25.
85. Sánchez, A. L.; Fernández-Tarrazo, E.; Boivin, P.; Liñán, A.; Williams, F. A. Ignition time of hydrogen-air diffusion flames. Comptes. Rendus. Mécanique. 2012, 340, 882-93.
86. Sánchez, A. L.; Fernández-Tarrazo, E.; Williams, F. A. The chemistry involved in the third explosion limit of H2-O2 mixtures. Combust. Flame. 2014, 161, 111-7.
87. Wang, X.; Law, C. K. An analysis of the explosion limits of hydrogen-oxygen mixtures. J. Chem. Phys. 2013, 138, 134305.
88. Liang, W.; Law, C. K. An analysis of the explosion limits of hydrogen/oxygen mixtures with nonlinear chain reactions. Phys. Chem. Chem. Phys. 2018, 20, 742-51.
89. Molkov, V.; Dadashzadeh, M.; Kashkarov, S.; Makarov, D. Performance of hydrogen storage tank with TPRD in an engulfing fire. Int. J. Hydrogen. Energy. 2021, 46, 36581-97.
90. Molkov, V.; Cirrone, D.; Shentsov, V.; Dery, W.; Kim, W.; Makarov, D. Dynamics of blast wave and fireball after hydrogen tank rupture in a fire in the open atmosphere. Int. J. Hydrogen. Energy. 2021, 46, 4644-65.
91. Cirrone, D.; Makarov, D.; Molkov, V. Rethinking “BLEVE explosion” after liquid hydrogen storage tank rupture in a fire. Int. J. Hydrogen. Energy. 2023, 48, 8716-30.
92. Baraza, X. The boiling liquid expanding vapour explosion (BLEVE): a bibliometric review and futur trends. J. Loss. Prev. Process. Ind. 2023, 83, 105104.
93. Holborn, P.; Benson, C.; Ingram, J. Modelling hazardous distances for large-scale liquid hydrogen pool releases. Int. J. Hydrogen. Energy. 2020, 45, 23851-71.
94. Mukhim, E. D.; Abbasi, T.; Tauseef, S.; Abbasi, S. A method for the estimation of overpressure generated by open air hydrogen explosions. J. Loss. Prev. Process. Ind. 2018, 52, 99-107.
95. Pitts, W. M.; Yang, J. C.; Blais, M.; Joyce, A. Dispersion and burning behavior of hydrogen released in a full-scale residential garage in the presence and absence of conventional automobiles. Int. J. Hydrogen. Energy. 2012, 37, 17457-69.
96. Thomas, J. K.; Eastwood, C.; Goodrich, M. Are unconfined hydrogen vapor cloud explosions credible? Process. Saf. Prog. 2015, 34, 36-43.
97. Sun, X.; Li, Q.; Xu, M.; Wang, L.; Guo, J.; Lu, S. Experimental study on the detonation propagation behaviors through a small-bore orifice plate in hydrogen-air mixtures. Int. J. Hydrogen. Energy. 2019, 44, 15523-35.
98. Groethe, M.; Merilo, E.; Colton, J.; Chiba, S.; Sato, Y.; Iwabuchi, H. Large-scale hydrogen deflagrations and detonations. Int. J. Hydrogen. Energy. 2007, 32, 2125-33.
99. Ciccarelli, G.; Dorofeev, S. Flame acceleration and transition to detonation in ducts. Prog. Energy. Combust. Sci. 2008, 34, 499-550.
100. Shamsadin Saeid, M. H.; Khadem, J.; Emami, S.; Ghodrat, M. Effect of diffusion time on the mechanism of deflagration to detonation transition in an inhomogeneous mixture of hydrogen-air. Int. J. Hydrogen. Energy. 2022, 47, 23411-26.
101. Zhou, S.; Luo, Z.; Wang, T.; He, M.; Li, R.; Su, B. Research progress on the self-ignition of high-pressure hydrogen discharge: a review. Int. J. Hydrogen. Energy. 2022, 47, 9460-76.
102. Dziemińska, E.; Hayashi, A. K. Auto-ignition and DDT driven by shock wave - Boundary layer interaction in oxyhydrogen mixture. Int. J. Hydrogen. Energy. 2013, 38, 4185-93.
103. Melguizo-Gavilanes, J.; Ballossier, Y.; Faria, L. Experimental and theoretical observations on DDT in smooth narrow channels. Proc. Combust. Inst. 2021, 38, 3497-503.
104. Urtiew, P. A.; Oppenheim, A. K.; Saunders, S. O. Experimental observations of the transition to detonation in an explosive gas. Proc. R. Soc. Lond. A. 1966, 295, 13-28.
105. Zeldovich, Y. Regime classification of an exothermic reaction with nonuniform initial conditions. Combust. Flame. 1980, 39, 211-4.
106. Gamezo, V. N.; Ogawa, T.; Oran, E. S. Flame acceleration and DDT in channels with obstacles: effect of obstacle spacing. Combust. Flame. 2008, 155, 302-15.
107. Han, W.; Gao, Y.; Law, C. K. Flame acceleration and deflagration-to-detonation transition in micro- and macro-channels: an integrated mechanistic study. Combust. Flame. 2017, 176, 285-98.
108. Goodwin, G. B.; Oran, E. S. Premixed flame stability and transition to detonation in a supersonic combustor. Combust. Flame. 2018, 197, 145-60.
109. Zhang, L.; Li, Z.; Zheng, J.; et al. Effect of strain-induced martensite on hydrogen embrittlement of austenitic stainless steels investigated by combined tension and hydrogen release methods. Int. J. Hydrogen. Energy. 2013, 38, 8208-14.
110. Zhang, L.; Wen, M.; Imade, M.; Fukuyama, S.; Yokogawa, K. Effect of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures. Acta. Mater. 2008, 56, 3414-21.
111. Zhang, S.; Liu, S.; Wan, J.; Liu, W. Effect of Nb-Ti multi-microalloying on the hydrogen trapping efficiency and hydrogen embrittlement susceptibility of hot-stamped boron steel. Mater. Sci. Eng. A. 2020, 772, 138788.
112. Lin, Y.; Mccarroll, I. E.; Lin, Y.; Chung, W.; Cairney, J. M.; Yen, H. Hydrogen trapping and desorption of dual precipitates in tempered low-carbon martensitic steel. Acta. Mater. 2020, 196, 516-27.
113. Di Stefano, D.; Mrovec, M.; Elsässer, C. First-principles investigation of quantum mechanical effects on the diffusion of hydrogen in iron and nickel. Phys. Rev. B. 2015, 92, 224301.
114. Ramunni, V. P.; Pascuet, M. I.; Castin, N.; Rivas, A. M. The influence of grain size on the hydrogen diffusion in bcc Fe. Comput. Mater. Sci. 2021, 188, 110146.
115. López Freixes, M.; Zhou, X.; Zhao, H.; et al. Revisiting stress-corrosion cracking and hydrogen embrittlement in 7xxx-Al alloys at the near-atomic-scale. Nat. Commun. 2022, 13, 4290.
116. Zhao, H.; Chakraborty, P.; Ponge, D.; et al. Hydrogen trapping and embrittlement in high-strength Al alloys. Nature 2022, 602, 437-41.
117. Safyari, M.; Moshtaghi, M.; Hojo, T.; Akiyama, E. Mechanisms of hydrogen embrittlement in high-strength aluminum alloys containing coherent or incoherent dispersoids. Corros. Sci. 2022, 194, 109895.
118. Sun, B.; Lu, W.; Gault, B.; et al. Chemical heterogeneity enhances hydrogen resistance in high-strength steels. Nat. Mater. 2021, 20, 1629-34.
119. Zhao, Y.; Lee, D.; Seok, M.; et al. Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement. Scr. Mater. 2017, 135, 54-8.
120. Fu, Z.; Yang, B.; Gan, K.; et al. Improving the hydrogen embrittlement resistance of a selective laser melted high-entropy alloy via modifying the cellular structures. Corros. Sci. 2021, 190, 109695.
121. Baek, S.; He, S.; Jang, M.; Back, D.; Jeong, D.; Park, S. Ultrasonic nanocrystal surface modification effect on reduction of hydrogen embrittlement in Inconel-625 parts fabricated via additive manufacturing process. J. Manuf. Processes. 2023, 108, 685-95.
122. Barth, R. R.; Simmons, K. L.; Marchi, C. S. Polymers for hydrogen infrastructure and vehicle fuel systems: applications, properties, and gap analysis. 2013. Available from: https://www.osti.gov/servlets/purl/1104755 [Last accessed on 30 May 2025].
123. Zaghdoudi, M.; Kömmling, A.; Böhning, M.; Jaunich, M. Ageing of elastomers in air and in hydrogen environment: a comparative study. Int. J. Hydrogen. Energy. 2024, 63, 207-16.
124. Fujiwara, H.; Ono, H.; Nishimura, S. Degradation behavior of acrylonitrile butadiene rubber after cyclic high-pressure hydrogen exposure. Int. J. Hydrogen. Energy. 2015, 40, 2025-34.
125. Luo, G.; Pang, B.; Luo, X.; Wang, Y.; Zhou, H.; Zhao, L. Brominated butyl rubber anticorrosive coating and its self-healing behaviors. Chin. J. Polym. Sci. 2023, 41, 297-305.
126. Zhang, X.; Xue, X.; Yin, Q.; et al. Enhanced compatibility and mechanical properties of carboxylated acrylonitrile butadiene rubber/styrene butadiene rubber by using graphene oxide as reinforcing filler. Compos. Part. B. Eng. 2017, 111, 243-50.
127. Kapuscinsky, N.; Ignatusha, P.; Islam, A.; Ezzine, M.; Du, N.; Meek, K. M. Polymeric coatings for preventing hydrogen embrittlement in industrial storage and transmission systems. ACS. Appl. Eng. Mater. 2024, 2, 2488-503.
128. Kim, H.; Popov, B. N.; Chen, K. S. Comparison of corrosion-resistance and hydrogen permeation properties of Zn-Ni, Zn-Ni-Cd and Cd coatings on low-carbon steel. Corros. Sci. 2003, 45, 1505-21.
129. Nemanič, V.; Zajec, B.; Dellasega, D.; Passoni, M. Hydrogen permeation through disordered nanostructured tungsten films. J. Nucl. Mater. 2012, 429, 92-8.
130. Lakdhar, I.; Alhussein, A.; Capelle, J.; Creus, J. Al-Ti-W alloys deposited by magnetron sputtering: effective barrier to prevent steel hydrogen embrittlement. Appl. Surf. Sci. 2021, 567, 150786.
131. Li, Y.; Barzagli, F.; Liu, P.; et al. Mechanism and evaluation of hydrogen permeation barriers: a critical review. Ind. Eng. Chem. Res. 2023, 62, 15752-73.
132. Menon, N. C.; Kruizenga, A. M.; Alvine, K. J.; San Marchi, C.; Nissen, A.; Brooks, K. Behaviour of polymers in high pressure environments as applicable to the hydrogen infrastructure. ASME 2016 Pressure Vessels and Piping Conference; 2016.
133. Jung, J.; Kim, I.; Kim, K. Evaluation of hydrogen permeation characteristics in rubbery polymers. Curr. Appl. Phys. 2021, 21, 43-9.
134. Zhang, S.; Yuan, S.; Pei, L.; et al. Innovating a EVOH composite coating towards outstanding H2 barrier and anti-corrosion properties. Chem. Eng. J. 2024, 499, 156327.
135. Jana, S.; Parthiban, A.; Rusli, W. Polymer material innovations for a green hydrogen economy. Chem. Commun. 2025, 61, 3233-49.
136. Yang, X.; Qin, L.; Wang, L.; Ding, R.; Shi, L.; Lv, B. Scalable synthesis of quasi-monodispersed BN colloidal nanocrystals by “solvent cutting” and their anti-electrochemical corrosion coating. Chem. Eng. J. 2018, 333, 191-9.
137. Nemanič, V. Hydrogen permeation barriers: basic requirements, materials selection, deposition methods, and quality evaluation. Nucl. Mater. Energy. 2019, 19, 451-7.
138. Levchuk, D.; Koch, F.; Maier, H.; Bolt, H. Deuterium permeation through Eurofer and α-alumina coated Eurofer. J. Nucl. Mater. 2004, 328, 103-6.
139. Zhang, G.; Dou, S.; Lu, Y.; Shi, Y.; Lai, X.; Wang, X. Mechanisms for adsorption, dissociation and diffusion of hydrogen in hydrogen permeation barrier of α-Al2O3: the role of crystal orientation. Int. J. Hydrogen. Energy. 2014, 39, 610-9.
140. Hatano, Y.; Zhang, K.; Hashizume, K. Fabrication of ZrO2 coatings on ferritic steel by wet-chemical methods as a tritium permeation barrier. Phys. Scr. 2011, 2011, 014044.
141. Chikada, T.; Suzuki, A.; Koch, F.; Maier, H.; Terai, T.; Muroga, T. Fabrication and deuterium permeation properties of erbia-metal multilayer coatings. J. Nucl. Mater. 2013, 442, S592-6.
142. Engels, J.; Houben, A.; Rasinski, M.; Linsmeier, C. Hydrogen saturation and permeation barrier performance of yttrium oxide coatings. Fusion. Eng. Des. 2017, 124, 1140-3.
143. He, D.; Li, S.; Liu, X.; et al. Preparation of Cr2O3 film by MOCVD as hydrogen permeation barrier. Fusion. Eng. Des. 2014, 89, 35-9.
144. Nemanič, V.; Mcguiness, P. J.; Daneu, N.; Zajec, B.; Siketić, Z.; Waldhauser, W. Hydrogen permeation through silicon nitride films. J. Alloys. Compd. 2012, 539, 184-9.
145. Matějíček, J.; Veverka, J.; Nemanič, V.; et al. Characterization of less common nitrides as potential permeation barriers. Fusion. Eng. Des. 2019, 139, 74-80.
146. Liu, Y.; Huang, S.; Ding, J.; Yang, Y.; Zhao, J. Vanadium carbide coating as hydrogen permeation barrier: a DFT study. Int. J. Hydrogen. Energy. 2019, 44, 6093-102.
147. Bagheri, S.; Guagliano, M. Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys. Surf. Eng. 2009, 25, 3-14.
148. Bagherifard, S. Enhancing the structural performance of lightweight metals by shot peening. Adv. Eng. Mater. 2019, 21, 1801140.
149. Li, X.; Zhang, J.; Wang, Y.; Ma, M.; Shen, S.; Song, X. The dual role of shot peening in hydrogen-assisted cracking of PSB1080 high strength steel. Mater. Des. 2016, 110, 602-15.
150. Meng, B.; Gu, C.; Zhang, L.; et al. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures. Int. J. Hydrogen. Energy. 2017, 42, 7404-12.
151. Shirvill, L.; Roberts, T.; Royle, M.; Willoughby, D.; Sathiah, P. Experimental study of hydrogen explosion in repeated pipe congestion - Part 2: effects of increase in hydrogen concentration in hydrogen-methane-air mixture. Int. J. Hydrogen. Energy. 2019, 44, 3264-76.
152. Li, X.; Shao, P.; Wang, J.; Huang, L.; Dong, Z.; Zhong, F. Study on the permeability behaviour of hydrogen doped natural gas in polyethylene pipeline. J. Phys. Conf. Ser. 2024, 2713, 012001.
153. Lei, Y.; Hosseini, E.; Liu, L.; Scholes, C.; Kentish, S. Internal polymeric coating materials for preventing pipeline hydrogen embrittlement and a theoretical model of hydrogen diffusion through coated steel. Int. J. Hydrogen. Energy. 2022, 47, 31409-19.
154. Hardie, D.; Charles, E.; Lopez, A. Hydrogen embrittlement of high strength pipeline steels. Corros. Sci. 2006, 48, 4378-85.
155. Slifka, A. J.; Drexler, E. S.; Nanninga, N. E.; et al. Fatigue crack growth of two pipeline steels in a pressurized hydrogen environment. Corros. Sci. 2014, 78, 313-21.
156. Drexler, E. S.; Slifka, A. J.; Amaro, R. L.; et al. Fatigue crack growth rates of API X70 pipeline steel in a pressurized hydrogen gas environment. Fatigue. Fract. Eng. Mat. Struct. 2014, 37, 517-25.
157. Koo, W. T.; Cho, H. J.; Kim, D. H.; et al. Chemiresistive hydrogen sensors: fundamentals, recent advances, and challenges. ACS. Nano. 2020, 14, 14284-322.
158. Guo, M.; Brewster Ii, J. T.; Zhang, H.; Zhao, Y.; Zhao, Y. Challenges and opportunities of chemiresistors based on microelectromechanical systems for chemical olfaction. ACS. Nano. 2022, 16, 17778-801.
159. Jeong, S. Y.; Kim, J. S.; Lee, J. H. Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction. Adv. Mater. 2020, 32, e2002075.
160. Marasso, S. L.; Tommasi, A.; Perrone, D.; et al. A new method to integrate ZnO nano-tetrapods on MEMS micro-hotplates for large scale gas sensor production. Nanotechnology 2016, 27, 385503.
161. Zhao, Y.; Zhang, H.; Zhang, S.; Zhao, Y. Toward highly trustable miniaturized semiconductor gas sensors. Matter 2022, 5, 1985-9.
162. Park, S. Y.; Kim, Y.; Kim, T.; Eom, T. H.; Kim, S. Y.; Jang, H. W. Chemoresistive materials for electronic nose: progress, perspectives, and challenges. InfoMat 2019, 1, 289-316.
163. Al-Karaki, J. N.; Kamal, A. E. Routing techniques in wireless sensor networks: a survey. IEEE. Wirel. Commun. 2004, 11, 6-28.
164. Jain, D.; Shukla, P. K.; Varma, S. Energy efficient architecture for mitigating the hot-spot problem in wireless sensor networks. J. Ambient. Intell. Human. Comput. 2023, 14, 10587-604.
165. Liu, J.; Zhao, Z.; Ji, J.; Hu, M. Research and application of wireless sensor network technology in power transmission and distribution system. Intell. Converged. Netw. 2020, 1, 199-220.
166. Sanjeevi, P.; Prasanna, S.; Siva Kumar, B.; Gunasekaran, G.; Alagiri, I.; Vijay Anand, R. Precision agriculture and farming using Internet of Things based on wireless sensor network. Trans. Emerging. Telecommun. Technol. 2020, 31, e3978.
167. Fu, X.; Pace, P.; Aloi, G.; Yang, L.; Fortino, G. Topology optimization against cascading failures on wireless sensor networks using a memetic algorithm. Comput. Netw. 2020, 177, 107327.
168. Gama, K.; Touseau, L.; Donsez, D. Combining heterogeneous service technologies for building an internet of things middleware. Comput. Commun. 2012, 35, 405-17.
169. Xie, X.; Tian, Y.; Wei, G. Deduction of sudden rainstorm scenarios: integrating decision makers' emotions, dynamic Bayesian network and DS evidence theory. Nat. Hazards. 2023, 116, 2935-55.
170. Fang, C.; Li, H.; Li, L.; et al. Smart electronic nose enabled by an all-feature olfactory algorithm. Adv. Intell. Syst. 2022, 4, 2200074.
171. Men, J.; Chen, G.; Yang, Y.; Reniers, G. An event-driven probabilistic methodology for modeling the spatial-temporal evolution of natural hazard-induced domino chain in chemical industrial parks. Reliab. Eng. Syst. Saf. 2022, 226, 108723.
172. Xu, Z.; Liu, X.; Xu, W.; Sun, B.; Liu, X.; Xu, D. Analysis on the disaster chain evolution from gas leak to explosion in urban utility tunnels. Eng. Fail. Anal. 2022, 140, 106609.
173. Men, J.; Chen, G.; Zeng, T. Multi-hazard coupling effects in chemical process industry - Part II: research advances and future perspectives on methodologies. IEEE. Syst. J. . 2023, 17, 1637-47.
174. Ramzali, N.; Lavasani, M. R. M.; Ghodousi, J. Safety barriers analysis of offshore drilling system by employing fuzzy event tree analysis. Saf. Sci. 2015, 78, 49-59.
175. Park, B.; Kim, Y.; Paik, S.; Kang, C. Numerical and experimental analysis of jet release and jet flame length for qualitative risk analysis at hydrogen refueling station. Process. Saf. Environ. Prot. 2021, 155, 145-54.
176. Patel, P.; Baalisampang, T.; Arzaghi, E.; Garaniya, V.; Abbassi, R.; Salehi, F. Computational analysis of the hydrogen dispersion in semi-confined spaces. Proc. Saf. Environ. Prot. 2023, 176, 475-88.
177. Atzmueller, M.; Becker, M.; Molino, A.; Mueller, J.; Peters, J.; Sîrbu, A. Applications for environmental sensing in EveryAware. In: Loreto V, Haklay M, Hotho A, et al., editors. Participatory sensing, opinions and collective awareness. Cham: Springer International Publishing; 2017. pp. 135-55.
178. Fan, C.; Zhang, C.; Yahja, A.; Mostafavi, A. Disaster city digital twin: a vision for integrating artificial and human intelligence for disaster management. Int. J. Inf. Manag. 2021, 56, 102049.
179. Basu, S.; Roy, S.; DasBit, S. A post-disaster demand forecasting system using principal component regression analysis and case-based reasoning over smartphone-based DTN. IEEE. Trans. Eng. Manag. 2019, 66, 224-39.
180. Gong, Z.; Wang, Y.; Wei, G.; Li, L.; Guo, W. Cascading disasters risk modeling based on linear uncertainty distributions. Int. J. Dis. Risk. Reduct. 2020, 43, 101385.
181. Dong, M.; Meng, Y.; Qin, C.; Li, T.; Zhang, T.; Zhao, D. Coupling evolution effect between security system vulnerability and security incident in petrochemical plants. J. Loss. Prev. Process. Ind. 2022, 75, 104682.
182. Ray, S. K.; Khan, A. M.; Mohalik, N. K.; Mishra, D.; Mandal, S.; Pandey, J. K. Review of preventive and constructive measures for coal mine explosions: an Indian perspective. Int. J. Min. Sci. Technol. 2022, 32, 471-85.
183. Cheng, J. A historical review of identifying and mitigating mine gas explosions. explosions in underground coal mines. Cham: Springer International Publishing; 2018. pp. 15-50.
184. Snoeys, J.; Going, J. E.; Taveau, J. R. Advances in dust explosion protection techniques: flameless venting. Proc. Eng. 2012, 45, 403-13.
185. Snoeys, J.; Going, J. E.; Taveau, J. R. Dust explosion protection using flameless venting. Bulk. Solids. Handl. 2008, 31, 733-8.
186. Cao, J.; Wu, J.; Zhao, Y.; Cai, J.; Bai, Y.; Pang, L. Suppression effects of energy-absorbing materials on natural gas explosion in utility tunnels. Energy 2023, 281, 128262.
187. Song, X.; Zuo, X.; Yang, Z.; Chen, J.; Xie, L.; Li, B. The explosion-suppression performance of mesh aluminum alloys and spherical nonmetallic materials on hydrogen-air mixtures. Int. J. Hydrogen. Energy. 2020, 45, 32686-701.
188. Pang, L.; Wang, C.; Han, M.; Xu, Z. A study on the characteristics of the deflagration of hydrogen-air mixture under the effect of a mesh aluminum alloy. J. Hazard. Mater. 2015, 299, 174-80.
189. Yang, Z.; Zhao, K.; Song, X.; Li, B.; Zhang, D.; Xie, L. Effects of mesh aluminium alloys and propane addition on the explosion-suppression characteristics of hydrogen-air mixture. Int. J. Hydrogen. Energy. 2021, 46, 34998-5013.
190. Zhou, S.; Gao, J.; Luo, Z.; et al. Effects of mesh aluminium alloy and aluminium velvet on the explosion of H2/air, CH4/air and C2H2/air mixtures. Int. J. Hydrogen. Energy. 2021, 46, 14871-80.
191. Li, Y.; Zhao, Q.; Liu, L.; Chen, X.; Huang, C.; Yuan, B. Investigation on the flame and explosion suppression of hydrogen/air mixtures by porous copper foams in the pipe with large aspect ratio. J. Loss. Prev. Process. Ind. 2022, 76, 104744.
192. Li, Y.; Zhao, Q.; Chen, X.; et al. Effect of copper foam on the explosion suppression in hydrogen/air with different equivalence ratios. Fuel 2023, 333, 126324.
193. Ustolin, F.; Paltrinieri, N.; Berto, F. Loss of integrity of hydrogen technologies: a critical review. Int. J. Hydrogen. Energy. 2020, 45, 23809-40.
194. Zhuang, C.; Wang, Z.; Zhang, Y.; et al. Effect of porous materials on explosion venting overpressure and flame of CH4/air premixed gas. Combust. Sci. Technol. 2023, 195, 508-29.
195. Xie, Q.; Wen, H.; Ren, Z.; Liu, H.; Wang, B.; Wolanski, P. Effects of silicone rubber and aerogel blanket-walled tubes on H2/air gaseous detonation. J. Loss. Prev. Process. Ind. 2017, 49, 753-61.
196. Szkudlarek, Z.; Janas, S. Active protection of work area against explosion of dust-gas mixture. Int. J. Coal. Sci. Technol. 2021, 8, 674-84.
197. Plessis JJL. Active explosion barrier performance against methane and coal dust explosions. Int. J. Coal. Sci. Technol. 2015, 2, 261-8.
198. Lesiak, P.; Bąk, D.; Maloziec, D.; Grabarczyk, M.; Kołaczkowski, A. Evaluation of the effectiveness of active HRD systems for dust explosion suppression in a technology demonstrator system. Saf. Fire. Technol. 2019, 53, 46-67.
199. van Wingerden, M.; Skjold, T.; Roosendans, D.; Dutertre, A.; Pekalski, A. Chemical inhibition of hydrogen-air explosions: literature review, simulations and experiments. Proc. Saf. Environ. Prot. 2023, 176, 1120-9.
200. Yan, C.; Bi, M.; Li, Y.; Gao, W. Effects of nitrogen and carbon dioxide on hydrogen explosion behaviors near suppression limit. J. Loss. Prev. Process. Ind. 2020, 67, 104228.
201. Holborn, P.; Battersby, P.; Ingram, J.; Averill, A.; Nolan, P. Estimating the effect of water fog and nitrogen dilution upon the burning velocity of hydrogen deflagrations from experimental test data. Int. J. Hydrogen. Energy. 2013, 38, 6882-95.
202. Li, Y.; Bi, M.; Zhou, Y.; Gao, W. Hydrogen cloud explosion suppression by micron-size water mist. Int. J. Hydrogen. Energy. 2022, 47, 23462-70.
203. Linteris, G. T.; Burgess, D. R.; Takahashi, F.; Katta, V. R.; Chelliah, H. K.; Meier, O. Stirred reactor calculations to understand unwanted combustion enhancement by potential halon replacements. Combust. Flame. 2012, 159, 1016-25.
204. Gao, M.; Bi, M.; Ye, L.; et al. Suppression of hydrogen-air explosions by hydrofluorocarbons. Proc. Saf. Environ. Prot. 2021, 145, 378-87.