REFERENCES

1. Yan, Q.; Kanatzidis, M. G. High-performance thermoelectrics and challenges for practical devices. Nat. Mater. 2022, 21, 503-13.

2. Shi, X. L.; Zou, J.; Chen, Z. G. Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 2020, 120, 7399-515.

3. Hameed, M. M.; Mansor, M.; Azrin, Mohd., Azau., M.; Muhsin, S. Thermoelectric cooler performance enhancement using thermoelectric generators and their use as a single model to improve the performance of thermal battery management systems for electric vehicles. Energy. Storage. 2023, 5, e406.

4. Mao, J.; Chen, G.; Ren, Z. Thermoelectric cooling materials. Nat. Mater. 2021, 20, 454-61.

5. Wu, Z.; Zhang, S.; Liu, Z.; Mu, E.; Hu, Z. Thermoelectric converter: strategies from materials to device application. Nano. Energy. 2022, 91, 106692.

6. Hao, F.; Qiu, P.; Tang, Y.; et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy. Environ. Sci. 2016, 9, 3120-7.

7. Witting, I. T.; Chasapis, T. C.; Ricci, F.; et al. The thermoelectric properties of bismuth telluride. Adv.. Electron. Mater. 2019, 5, 1800904.

8. Hu, L.; Zhu, T.; Liu, X.; Zhao, X. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv. Funct. Mater. 2014, 24, 5211-8.

9. Kim, Y. M.; Lydia, R.; Kim, J.; Lin, C.; Ahn, K.; Rhyee, J. Enhancement of thermoelectric properties in liquid-phase sintered Te-excess bismuth antimony tellurides prepared by hot-press sintering. Acta. Mater. 2017, 135, 297-303.

10. Zhu, B.; Xie, W.; Huang, R.; et al. High thermoelectric performance in Ag-doped Bi0.5Sb1.5Te3 nanocomposites synthesized via low-temperature liquid phase sintering. Mater. Today. Energy. 2024, 46, 101717.

11. Deng, R.; Su, X.; Zheng, Z.; et al. Thermal conductivity in Bi0.5Sb1.5Te3+x and the role of dense dislocation arrays at grain boundaries. Sci. Adv. 2018, 4, eaar5606.

12. Cho, H.; Kim, J. H.; Back, S. Y.; Ahn, K.; Rhyee, J.; Park, S. Enhancement of thermoelectric properties in CuI-doped Bi2Te2.7Se0.3 by hot-deformation. J. Alloys. Compd. 2018, 731, 531-6.

13. Haruna, A. Y.; Luo, Y.; Li, W.; et al. High thermoelectric performance in multiscale Ag8SnSe6 included n-type bismuth telluride for cooling application. Mater. Today. Energy. 2023, 35, 101332.

14. Luo, K.; Chen, H.; Hu, W.; et al. Tailoring interfacial states for improved n-type bismuth telluride thermoelectrics. Nano. Energy. 2024, 128, 109845.

15. Beekman, M.; Morelli, D. T.; Nolas, G. S. Better thermoelectrics through glass-like crystals. Nat. Mater. 2015, 14, 1182-5.

16. Wang, X.; Guo, W.; Fu, Y. High-entropy alloys: emerging materials for advanced functional applications. J. Mater. Chem. A. 2021, 9, 663-701.

17. Ghosh, S.; Raman, L.; Sridar, S.; Li, W. High-entropy engineering in thermoelectric materials: a review. Crystals 2024, 14, 432.

18. Ye, Y.; Wang, Q.; Lu, J.; Liu, C.; Yang, Y. High-entropy alloy: challenges and prospects. Mater. Today. 2016, 19, 349-62.

19. George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515-34.

20. Yao, Y.; Dong, Q.; Brozena, A.; et al. High-entropy nanoparticles: synthesis-structure-property relationships and data-driven discovery. Science 2022, 376, eabn3103.

21. Jiang, B.; Yu, Y.; Cui, J.; et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 2021, 371, 830-4.

22. Jiang, B.; Yu, Y.; Chen, H.; et al. Entropy engineering promotes thermoelectric performance in p-type chalcogenides. Nat. Commun. 2021, 12, 3234.

23. Jiang, B.; Wang, W.; Liu, S.; et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science 2022, 377, 208-13.

24. Kim, J. H.; Hidayati, R.; Jung, S.; et al. Enhancement of critical current density and strong vortex pinning in high entropy alloy superconductor Ta1/6Nb2/6Hf1/6Zr1/6Ti1/6 synthesized by spark plasma sintering. Acta. Materialia. 2022, 232, 117971.

25. Martínez, E.; Mikheenko, P.; Martínez-lópez, M.; Millán, A.; Bevan, A.; Abell, J. S. Flux pinning force in bulk MgB2 with variable grain size. Phys. Rev. B. 2007, 75.

26. Abou, El., Hassan., A.; Labrag, A.; Taoufik, A.; et al. Magnetic penetration depth and coherence length in a single-crystal YBa2Cu3O7-δ. Physica. Status. Solidi. (b). 2021, 258, 2100292.

27. Rowell, J. M. The widely variable resistivity of MgB2 samples. Supercond. Sci. Technol. 2003, 16, R17-27.

28. Jiang, J.; Senkowicz, B. J.; Larbalestier, D. C.; Hellstrom, E. E. Influence of boron powder purification on the connectivity of bulk MgB2. Supercond. Sci. Technol. 2006, 19, L33-6.

29. Muhammad, Y.; Rahim, M.; Hussain, N.; Iqbal, Z.; Naseem, A. Enhanced transport properties of (Ag)x/CuTl-1223 nano-composites with the application of high pelletization pressure. Appl. Phys. A. 2024, 130, 7801.

30. Matthews, G. A. B.; Mousavi, T.; Santra, S.; Grovenor, C. R. M.; Grant, P. S.; Speller, S. Improving the connectivity of MgB2 bulk superconductors by a novel liquid phase sintering process. Supercond. Sci. Technol. 2022, 35, 065005.

31. Xu, Z.; Jiang, Z.; Kuai, C.; et al. Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials. Nat. Commun. 2020, 11, 83.

32. Wang, Q.; Zhao, C.; Hu, X.; et al. Grain-boundary-rich interphases for rechargeable batteries. J. Am. Chem. Soc. 2024, 146, 31778-87.

33. Son, D.; Lee, J.; Choi, Y. J.; et al. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy. 2016, 1, 16081.

34. Sherkar, T. S.; Momblona, C.; Gil-Escrig, L.; et al. Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS. Energy. Lett. 2017, 2, 1214-22.

35. Choi, H. H.; Paterson, A. F.; Fusella, M. A.; et al. Hall effect in polycrystalline organic semiconductors: the effect of grain boundaries. Adv. Funct. Mater. 2020, 30, 1903617.

36. Sarkar, P.; Muhammed, Ali., A. V.; Ghorai, G.; et al. On the grain boundary charge transport in p-type polycrystalline nanoribbon transistors. Nanoscale 2024, 16, 16611-21.

37. Wei, Z.; Wang, C.; Zhang, J.; et al. Precise regulation of carrier concentration in thermoelectric BiSbTe alloys via magnetic doping. ACS. Appl. Mater. Interfaces. 2020, 12, 20653-63.

38. Kim, J. H.; Cho, H.; Back, S. Y.; Yun, J. H.; Lee, H. S.; Rhyee, J. Lattice distortion and anisotropic thermoelectric properties in hot-deformed CuI-doped Bi2Te2·7Se0.3. J. Alloys. . Compd. 2020, 815, 152649.

39. Kim, J. H.; Back, S. Y.; Yun, J. H.; Lee, H. S.; Rhyee, J. S. Scattering mechanisms and suppression of bipolar diffusion effect in Bi2Te2.85Se0.15Ix compounds. Materials 2021, 14, 1564.

40. Cao, T.; Shi, X.; Li, M.; et al. Advances in bismuth-telluride-based thermoelectric devices: progress and challenges. eScience 2023, 3, 100122.

41. Hu, X.; Xiang, Q.; Kong, D.; et al. The effect of Ni/Sn doping on the thermoelectric properties of BiSbTe polycrystalline bulks. J. Solid. State. Chem. 2019, 277, 175-81.

42. Zhu, T.; Gao, H.; Chen, Y.; Zhao, X. Ioffe-regel limit and lattice thermal conductivity reduction of high performance (AgSbTe2)15(GeTe)85 thermoelectric materials. J. Mater. Chem. A. 2014, 2, 3251-6.

43. Kim, H.; Kim, S. I.; Lee, K. H.; Kim, S. W.; Snyder, G. J. Phonon scattering by dislocations at grain boundaries in polycrystalline Bi0.5Sb1.5Te3. Physica. Status. Solidi. (b). 2017, 254, 1600103.

44. Bahk, J.; Shakouri, A. Minority carrier blocking to enhance the thermoelectric figure of merit in narrow-band-gap semiconductors. Phys. Rev. B. 2016, 93, 165209.

45. Wei, Z.; Yang, Y.; Wang, C.; Li, Z.; Zheng, L.; Luo, J. Enhanced room-temperature thermoelectric performance of p-type BiSbTe by reducing carrier concentration. RSC. Adv. 2019, 9, 2252-7.

46. Cao, S.; Huang, Z. Y.; Zu, F. Q.; Xu, J.; Yang, L.; Chen, Z. G. Enhanced thermoelectric properties of Ag-modified Bi0.5Sb1.5Te3 composites by a facile electroless plating method. ACS. Appl. Mater. Interfaces. 2017, 9, 36478-82.

47. Dharmaiah, P.; Lee, K.; Song, S. H.; Kim, H. S.; Hong, S. Enhanced thermoelectric performance of Bi0.5Sb1.5Te3 composites through potential barrier scattering at heterogeneous interfaces. Mater. Res. Bull. 2021, 133, 111023.

48. Wu, G.; Yan, Z.; Wang, X.; et al. Optimized thermoelectric properties of Bi0.48Sb1.52Te3 through AgCuTe doping for low-grade heat harvesting. ACS. Appl. Mater. Interfaces. 2021, 13, 57514-20.

49. Li, Y.; Ren, M.; Sun, Z.; Yao, Z. Nanoarchitectonics of p-type BiSbTe with improved figure of merit via introducing PbTe nanoparticles. RSC. Adv. 2021, 11, 36636-43.

50. Maksymuk, M.; Dzundza, B.; Matkivsky, O.; Horichok, I.; Shneck, R.; Dashevsky, Z. Development of the high performance thermoelectric unicouple based on Bi2Te3 compounds. J. Power. Sources. 2022, 530, 231301.

51. Deng, R.; Su, X.; Hao, S.; et al. High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe. Energy. Environ. Sci. 2018, 11, 1520-35.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/