REFERENCES
1. Jolliff, B. L.; Robinson, M. S. The scientific legacy of the Apollo program. Phys. Today. 2019, 72, 44-50.
2. Chen, M.; Goyal, R.; Majji, M.; Skelton, R. E. Review of space habitat designs for long term space explorations. Prog. Aerosp. Sci. 2021, 122, 100692.
3. Martinelli, A.; Buzzaccaro, S.; Galand, Q.; et al. An advanced light scattering apparatus for investigating soft matter onboard the International Space Station. NPJ. Microgravity. 2024, 10, 115.
4. NASA Home page. https://www.nasa.gov/humans-in-space/space-launch-system/?utm_source=chatgpt.com (accessed 2026-02-4).
5. Kraft, R. H. NASA progresses toward artemis II moon mission. https://www.nasa.gov/missions/artemis/artemis-2/nasa-progresses-toward-artemis-ii-moon-mission/ (accessed 2026-02-4).
6. Arianespace Home page. https://newsroom.arianespace.com/with-ariane-6-arianespace-successfully-launches-copernicus-sentinel-1d-satellite?utm_source=chatgpt.com (accessed 2026-02-4).
7. Yamaguchi, M. Japan successfully launches new cargo spacecraft to deliver supplies to International Space Station. https://apnews.com/article/japan-space-rocket-h3-iss-6b4384acb177c6b8f9c41fa7005b6691 (accessed 2026-02-4).
8. Robinson-Smith, W. SpaceX to launch 4 Falcon Heavy rockets as part of newest U.S. national security missions award. https://spaceflightnow.com/2025/10/04/spacex-to-launch-4-falcon-heavy-rockets-as-part-of-newest-u-s-national-security-missions-award/?utm_source=chatgpt.com (accessed 2026-02-4).
9. Dunn, M. Blue origin launches huge rocket carrying twin NASA spacecraft to Mars. https://apnews.com/article/blue-origin-mars-nasa-new-glenn-bezos-4e3e6c380b8294b557618a6fea92282b (accessed 2026-02-4).
10. Data Page: annual number of objects launched into space. https://archive.ourworldindata.org/20250909-093708/grapher/yearly-number-of-objects-launched-into-outer-space.html (accessed 2026-02-4).
11. Alta sets flexible solar record with 29.1% GaAs cell. https://optics.org/news/9/12/19?utm (accessed 2026-02-4).
12. Conway, E. J.; Walker, G. H.; Heinbockel, J. H. GaAs solar cells for space applications. https://ntrs.nasa.gov/citations/19800064033 (accessed 2026-02-4).
13. Min, H.; Lee, D. Y.; Kim, J.; et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444-50.
14. Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html (accessed 2026-02-4).
15. Delmas, W.; Erickson, S.; Arteaga, J.; et al. Evaluation of hybrid perovskite prototypes after 10-month space flight on the international space station. Adv. Energy. Mater. 2023, 13, 2203920.
17. Hisamatsu, T.; Kawasaki, O.; Matsuda, S.; Nakao, T.; Wakow, Y. Radiation degradation of large fluence irradiated space silicon solar cells. Sol. Energ. Mat. Sol. Cells. 1998, 50, 331-8.
18. Raya-Armenta, J. M.; Bazmohammadi, N.; Vasquez, J. C.; Guerrero, J. M. A short review of radiation-induced degradation of III-V photovoltaic cells for space applications. Sol. Energ. Mat. Sol. Cells. 2021, 233, 111379.
19. Inguimbert, C.; Messenger, S. Equivalent displacement damage dose for on-orbit space applications. IEEE. Trans. Nucl. Sci. 2012, 59, 3117-25.
20. Messenger, S. R.; Summers, G. P.; Burke, E. A.; Walters, R. J.; Xapsos, M. A. Modeling solar cell degradation in space: a comparison of the NRL displacement damage dose and the JPL equivalent fluence approaches. Prog. Photovolt. Res. Appl. 2001, 9, 103-21.
21. Neitzert, H.; Ferrara, M.; Kunst, M.; et al. Electroluminescence efficiency degradation of crystalline silicon solar cells after irradiation with protons in the energy range between 0.8 MeV and 65 MeV. Phys. Status. Solidi. 2008, 245, 1877-83.
22. Durant, B. K.; Afshari, H.; Singh, S.; Rout, B.; Eperon, G. E.; Sellers, I. R. Tolerance of perovskite solar cells to targeted proton irradiation and electronic ionization induced healing. ACS. Energy. Lett. 2021, 6, 2362-8.
23. Lang, F.; Nickel, N. H.; Bundesmann, J.; et al. Radiation hardness and self-healing of perovskite solar cells. Adv. Mater. 2016, 28, 8726-31.
24. Nie, W.; Blancon, J. C.; Neukirch, A. J.; et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 2016, 7, 11574.
25. Yuan, Q.; Chen, J.; Shi, C.; Shi, X.; Sun, C.; Jiang, B. Advances in self-healing perovskite solar cells enabled by dynamic polymer bonds. Macromol. Rapid. Commun. 2025, 46, e2400630.
26. Kirmani, A. R.; Byers, T. A.; Ni, Z.; et al. Unraveling radiation damage and healing mechanisms in halide perovskites using energy-tuned dual irradiation dosing. Nat. Commun. 2024, 15, 696.
27. Brus, V. V.; Lang, F.; Bundesmann, J.; et al. Defect dynamics in proton irradiated CH3NH3PbI3 perovskite solar cells. Adv. Elect. Mater. 2017, 3, 1600438.
28. Miyazawa, Y.; Ikegami, M.; Chen, H. W.; et al. Tolerance of perovskite solar cell to high-energy particle irradiations in space environment. iScience 2018, 2, 148-55.
29. Keleş, D. G.; Karadeniz, H.; Karadeniz, S. A study of proton radiation effects on a silicon based solar cell. Gazi. Univ. J. Sci. Part. A. Eng. Innov. 2023, 10, 105-12.
30. Lin, T.; Hsieh, C.; Kanai, A.; et al. Radiation resistant chalcopyrite CIGS solar cells: proton damage shielding with Cs treatment and defect healing via heat-light soaking. J. Mater. Chem. A. 2024, 12, 7536-48.
31. Anspaugh, B. E.; Downing, R. G. Radiation effects in silicon and gallium arsenide solar cells using isotropic and normally incident radiation. https://ntrs.nasa.gov/citations/19840026722 (accessed 2026-02-4).
32. Yamaguchi, M.; Taylor, S. J.; Matsuda, S.; Kawasaki, O. Mechanism for the anomalous degradation of Si solar cells induced by high fluence 1 MeV electron irradiation. Appl. Phys. Lett. 1996, 68, 3141-3.
33. Boldyreva, A. G.; Frolova, L. A.; Zhidkov, I. S.; et al. Unravelling the material composition effects on the gamma ray stability of lead halide perovskite solar cells: MAPbI3 breaks the records. J. Phys. Chem. Lett. 2020, 11, 2630-6.
34. Ginisty, F.; Wrobel, F.; Ecoffet, R.; et al. South Atlantic anomaly evolution seen by the proton flux. JGR. Space. Phys. 2024, 129, e2023JA032186.
35. Afshari, H.; Chacon, S. A.; Sourabh, S.; et al. Radiation tolerance and self-healing in triple halide perovskite solar cells. APL. Energy. 2023, 1, 026105.
36. Zhao, P.; Su, J.; Guo, Y.; et al. A new all-inorganic vacancy-ordered double perovskite Cs2CrI6 for high-performance photovoltaic cells and alpha-particle detection in space environment. Mater. Today. Phys. 2021, 20, 100446.
37. Shim, H.; Seo, S.; Chandler, C.; et al. Enhancing radiation resilience of wide-band-gap perovskite solar cells for space applications via A-site cation stabilization with PDAI2. Joule 2025, 9, 102043.
38. Akbulatov, A. F.; Frolova, L. A.; Dremova, N. N.; et al. Light or heat: what is killing lead halide perovskites under solar cell operation conditions? J. Phys. Chem. Lett. 2020, 11, 333-9.
39. Juarez-Perez, E. J.; Hawash, Z.; Raga, S. R.; Ono, L. K.; Qi, Y. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis. Energy. Environ. Sci. 2016, 9, 3406-10.
40. Tu, Y.; Xu, G.; Yang, X.; et al. Mixed-cation perovskite solar cells in space. Sci. China. Phys. Mech. Astron. 2019, 62, 9356.
41. Cardinaletti, I.; Vangerven, T.; Nagels, S.; et al. Organic and perovskite solar cells for space applications. Sol. Energ. Mat. Sol. Cells. 2018, 182, 121-7.
42. Reb, L. K.; Böhmer, M.; Predeschly, B.; et al. Perovskite and organic solar cells on a rocket flight. Joule 2020, 4, 1880-92.
43. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643-7.
44. Hu, Y.; Niu, T.; Liu, Y.; et al. Flexible perovskite solar cells with high power-per-weight: progress, application, and perspectives. ACS. Energy. Lett. 2021, 6, 2917-43.
45. Wang, Z.; Dong, Q.; Yan, Y.; et al. Al2O3 nanoparticles as surface modifier enables deposition of high quality perovskite films for ultra-flexible photovoltaics. Adv. Powder. Mater. 2024, 3, 100142.
46. Li, Z.; Jia, C.; Wan, Z.; et al. Boosting mechanical durability under high humidity by bioinspired multisite polymer for high-efficiency flexible perovskite solar cells. Nat. Commun. 2025, 16, 1771.
47. Lee, M.; Jo, Y.; Kim, D. S.; Jeong, H. Y.; Jun, Y. Efficient, durable and flexible perovskite photovoltaic devices with Ag-embedded ITO as the top electrode on a metal substrate. J. Mater. Chem. A. 2015, 3, 14592-7.
48. Kaltenbrunner, M.; Adam, G.; Głowacki, E. D.; et al. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 2015, 14, 1032-9.
49. Kang, S.; Jeong, J.; Cho, S.; et al. Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance. J. Mater. Chem. A. 2019, 7, 1107-14.
50. Zhang, H.; Cheng, J.; Li, D.; et al. Perovskite films: toward all room-temperature, solution-processed, high-performance planar perovskite solar cells: a new scheme of pyridine-promoted perovskite formation (Adv. Mater. 13/2017). Adv. Mater. 2017, 29, adma.201770091.
51. Zhang, H.; Cheng, J.; Li, D.; et al. Toward all room-temperature, solution-processed, high-performance planar perovskite solar cells: a new scheme of pyridine-promoted perovskite formation. Adv. Mater. 2017, 29, 1604695.
52. Panagiotopoulos, A.; Maksudov, T.; Kakavelakis, G.; et al. A critical perspective for emerging ultra-thin solar cells with ultra-high power-per-weight outputs. Appl. Phys. Rev. 2023, 10, 041303.
53. Zhang, X.; Zhang, C.; Li, D.; et al. High weight-specific power density of thin-film amorphous silicon solar cells on graphene papers. Nanoscale. Res. Lett. 2019, 14, 324.
54. Jeong, S.; McGehee, M. D.; Cui, Y. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Nat. Commun. 2013, 4, 2950.
55. Kim, J.; Hwang, J.; Song, K.; Kim, N.; Shin, J. C.; Lee, J. Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives. Appl. Phys. Lett. 2016, 108, 253101.
56. Cho, S.; Jung, D.; Kim, J.; Seo, J.; Ju, H.; Lee, J. Ultrathin GaAs photovoltaic arrays integrated on a 1.4 µm polymer substrate for high flexibility, a lightweight design, and high specific power. Adv. Mater. Technol. 2022, 7, 2200344.
57. Algora, C.; Reboreda, D. G.; Palacios, P. F.; et al. Flexible GaInP/Ga(In)As/Ge triple-junction space solar cells with a simple fabrication process based on Ge substrate thinning demonstrate power-to-mass ratios of 1.3 kW/kg. Sol. Energ. Mat. Sol. Cells. 2025, 292, 113817.
58. Li, X.; Yu, H.; Liu, Z.; et al. Progress and challenges toward effective flexible perovskite solar cells. Nanomicro. Lett. 2023, 15, 206.
59. Gao, Y.; Huang, K.; Long, C.; et al. Flexible perovskite solar cells: from materials and device architectures to applications. ACS. Energy. Lett. 2022, 7, 1412-45.
60. Li, Y.; Jiang, S.; Li, F.; Chen, C. Research of aging test on high Tg colorless polyimide. J. Appl. Polym. Sci. 2024, 141, e55286.
61. Liu, Y.; Wang, Y.; Wu, D. Synthetic strategies for highly transparent and colorless polyimide film. J. Appl. Polym. Sci. 2022, 139, e52604.
62. Fang, Y.; He, X.; Kang, J.; et al. Colorless transparent and thermally stable terphenyl polyimides with various small side groups for substrate application. Eur. Polym. J. 2024, 202, 112640.
63. Lee, G.; Kim, M.; Choi, Y. W.; et al. Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy. Environ. Sci. 2019, 12, 3182-91.
64. Bu, T.; Li, J.; Zheng, F.; et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 2018, 9, 4609.
65. Bu, T.; Shi, S.; Li, J.; et al. Low-temperature presynthesized crystalline tin oxide for efficient flexible perovskite solar cells and modules. ACS. Appl. Mater. Interfaces. 2018, 10, 14922-9.
66. Duan, M.; Yang, J.; Li, T.; et al. Mechanically stable screen-printed flexible perovskite solar cells via selective self-assembled siloxane coupling agents. NPJ. Flex. Electron. 2025, 9, 407.
67. Yeo, J.; Lee, C.; Jang, D.; et al. Reduced graphene oxide-assisted crystallization of perovskite via solution-process for efficient and stable planar solar cells with module-scales. Nano. Energy. 2016, 30, 667-76.
68. Lee, M.; Jo, Y.; Kim, D. S.; Jun, Y. Flexible organo-metal halide perovskite solar cells on a Ti metal substrate. J. Mater. Chem. A. 2015, 3, 4129-33.
69. Wang, X.; Li, Z.; Xu, W.; et al. TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano. Energy. 2015, 11, 728-35.
70. Kumar, A.; Rani, S.; Sundar, Ghosh. D. Kitchen-grade aluminium foil as dual-purpose substrate-cum-electrode for ultrathin, ultralight, and bendable perovskite solar cells. Sol. Energ. Mat. Sol. Cells. 2024, 268, 112737.
71. Peleg, R. Printed flexible solar cells by CSIRO launched on Space Machine Company’s Optimus-1 satellite, as part of Space X’s Transporter-10 mission. https://www.perovskite-info.com/printed-flexible-solar-cells-csiro-launched-space-machine-company-s-optimus-1 (accessed 2026-02-4).
72. Ma, Y.; Lu, Z.; Su, X.; Zou, G.; Zhao, Q. Recent progress toward commercialization of flexible perovskite solar cells: from materials and structures to mechanical stabilities. Adv. Energy. Sustain. Res. 2023, 4, 2200133.
73. Sears, K. K.; Fievez, M.; Gao, M.; Weerasinghe, H. C.; Easton, C. D.; Vak, D. ITO-free flexible perovskite solar cells based on roll-to-roll, slot-die coated silver nanowire electrodes. Sol. RRL. 2017, 1, 1700059.
74. Lu, H.; Sun, J.; Zhang, H.; Lu, S.; Choy, W. C. Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells. Nanoscale 2016, 8, 5946-53.
75. Jung, H. S.; Han, G. S.; Park, N.; Ko, M. J. Flexible perovskite solar cells. Joule 2019, 3, 1850-80.
76. Li, Y.; Meng, L.; Yang, Y. M.; et al. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 2016, 7, 10214.
77. Liu, D.; Bi, J.; Xu, W.; et al. Strain relaxation in halide perovskites via 2D/3D perovskite heterojunction formation. Sci. Adv. 2025, 11, eadu3459.
78. Tang, G.; Chen, L.; Cao, X.; Wang, Y.; Zhang, H.; Tai, Q. A review on recent advances in flexible perovskite solar cells. Solar. RRL. 2025, 9, 2400844.
79. Li, Y.; Yan, S.; Cao, J.; et al. High performance flexible Sn-Pb mixed perovskite solar cells enabled by a crosslinking additive. NPJ. Flex. Electron. 2023, 7, 253.
80. Jin, J.; Zhu, Z.; Ming, Y.; et al. Spontaneous bifacial capping of perovskite film for efficient and mechanically stable flexible solar cell. Nat. Commun. 2025, 16, 90.
81. Aristidou, N.; Eames, C.; Sanchez-Molina, I.; et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 2017, 8, 15218.
82. Seid, B. A.; Sarisozen, S.; Peña-Camargo, F.; et al. Understanding and mitigating atomic oxygen-induced degradation of perovskite solar cells for near-earth space applications. Small 2024, 20, e2311097.
83. Wang, Y.; Ahmad, I.; Leung, T.; et al. Encapsulation and Stability testing of perovskite solar cells for real life applications. ACS. Mater. Au. 2022, 2, 215-36.
84. Yang, W.; Zhang, Y.; Xiao, C.; Yang, J.; Shi, T. A review of encapsulation methods and geometric improvements of perovskite solar cells and modules for mass production and commercialization. Nano. Mater. Sci. 2025, 7, 790-809.
85. Zhang, C.; Xiong, Y.; Gao, M.; Lan, Z.; Wu, J.; Ye, L. Electrostatically sprayed flexible encapsulation for high-performance III-V solar cells. Solar. RRL. 2024, 8, 2300836.
86. Bush, M. E.; Sims, J. D.; Erickson, S. S.; et al. Space environment considerations for perovskite solar cell operations: a review. Acta. Astronaut. 2025, 235, 235-50.
87. Zheng, Y.; Zhang, G.; Shen, Z.; et al. Advancing perovskite photovoltaics for space: critical stability testing guidelines. Adv. Photon. 2025, 7, 030502.
88. Kirmani, A. R.; Ostrowski, D. P.; Vansant, K. T.; et al. Metal oxide barrier layers for terrestrial and space perovskite photovoltaics. Nat. Energy. 2023, 8, 191-202.
89. Ajdič, Ž.; Jošt, M.; Topič, M. The effect of Al2O3 on the performance of perovskite solar cells. Solar. RRL. 2024, 8, 2400247.
90. Li, J.; Xia, R.; Qi, W.; et al. Encapsulation of perovskite solar cells for enhanced stability: structures, materials and characterization. J. Power. Sources. 2021, 485, 229313.
91. Huang, C.; Liu, J.; Zhao, L.; Hu, N.; Wei, Q. Advances in atomic oxygen resistant polyimide composite films. Compos. Part. A. Appl. Sci. Manuf. 2023, 168, 107459.
92. Zhou, S.; Zhang, L.; Zou, L.; Ayubi, B. I.; Wang, Y. Mechanism analysis and potential applications of atomic oxygen erosion protection for kapton-type polyimide based on molecular dynamics simulations. Polymers 2024, 16, 1687.
93. Mariani, P.; Molina-García, MÁ.; Barichello, J.; et al. Low-temperature strain-free encapsulation for perovskite solar cells and modules passing multifaceted accelerated ageing tests. Nat. Commun. 2024, 15, 4552.
94. Wang, T.; Yang, J.; Cao, Q.; et al. Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells. Nat. Commun. 2023, 14, 1342.
95. Xue, D. J.; Hou, Y.; Liu, S. C.; et al. Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 2020, 11, 1514.
96. Dailey, M.; Li, Y.; Printz, A. D. Residual film stresses in perovskite solar cells: origins, effects, and mitigation strategies. ACS. Omega. 2021, 6, 30214-23.
97. Wu, J.; Liu, S. C.; Li, Z.; et al. Strain in perovskite solar cells: origins, impacts and regulation. Natl. Sci. Rev. 2021, 8, nwab047.
98. Vansant, K. T.; Kirmani, A. R.; Patel, J. B.; et al. Combined stress testing of perovskite solar cells for stable operation in space. ACS. Appl. Energy. Mater. 2023, 6, 10319-26.
99. Balan, M. C.; Damian, M.; Jäntschi, L. Preliminary results on design and implementation of a solar radiation monitoring system. Snesors 2008, 8, 963-78.
100. Ji, J.; Liu, X.; Jiang, H.; et al. Two-stage ultraviolet degradation of perovskite solar cells induced by the oxygen vacancy-Ti4+ states. iScience 2020, 23, 101013.
101. Farooq, A.; Hossain, I. M.; Moghadamzadeh, S.; et al. Spectral dependence of degradation under ultraviolet light in perovskite solar cells. ACS. Appl. Mater. Interfaces. 2018, 10, 21985-90.
102. Berhe, T. A.; Su, W.; Chen, C.; et al. Organometal halide perovskite solar cells: degradation and stability. Energy. Environ. Sci. 2016, 9, 323-56.
103. Lee, S. W.; Kim, S.; Bae, S.; et al. UV degradation and recovery of perovskite solar cells. Sci. Rep. 2016, 6, 38150.
104. Gao, J.; Sahli, F.; Liu, C.; et al. Solar water splitting with perovskite/silicon tandem cell and TiC-supported Pt nanocluster electrocatalyst. Joule 2019, 3, 2930-41.
105. Liu, J.; He, Y.; Ding, L.; et al. Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature 2024, 635, 596-603.
106. Liu, Z.; Lin, R.; Wei, M.; et al. All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites. Nat. Mater. 2025, 24, 252-9.
107. Lin, R.; Wang, Y.; Lu, Q.; et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 2023, 620, 994-1000.
108. Al-Ashouri, A.; Köhnen, E.; Li, B.; et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 2020, 370, 1300-9.
109. Quitsch, W. A.; deQuilettes, D. W.; Pfingsten, O.; et al. The role of excitation energy in photobrightening and photodegradation of halide perovskite thin films. J. Phys. Chem. Lett. 2018, 9, 2062-9.
110. Roose, B.; Wang, Q.; Abate, A. The role of charge selective contacts in perovskite solar cell stability. Adv. Energy. Mater. 2019, 9, 1803140.
111. Dong, Q.; Wang, M.; Zhang, Q.; et al. Discontinuous SnO2 derived blended-interfacial-layer in mesoscopic perovskite solar cells: minimizing electron transfer resistance and improving stability. Nano. Energy. 2017, 38, 358-67.
112. Dong, Q.; Shi, Y.; Wang, K.; et al. Insight into perovskite solar cells based on SnO2 compact electron-selective layer. J. Phys. Chem. C. 2015, 119, 10212-7.
113. Arora, N.; Dar, M. I.; Akin, S.; et al. Low-cost and highly efficient carbon-based perovskite solar cells exhibiting excellent long-term operational and UV stability. Small 2019, 15, e1904746.
114. Zhang, M.; Cui, X.; Wang, Y.; et al. Simple route to interconnected, hierarchically structured, porous Zn2SnO4 nanospheres as electron transport layer for efficient perovskite solar cells. Nano. Energy. 2020, 71, 104620.
115. Standard: qualification and quality requirements for space solar cells (AIAA S-111A-2014). Washington: American Institute of Aeronautics and Astronautics, Inc, 2014. https://arc.aiaa.org/doi/book/10.2514/4.102806 (accessed 2026-02-4).
116. Dong, Z.; Li, W.; Wang, H.; et al. High-temperature perovskite solar cells. Solar. RRL. 2021, 5, 2100370.
117. Moot, T.; Patel, J. B.; McAndrews, G.; et al. Temperature coefficients of perovskite photovoltaics for energy yield calculations. ACS. Energy. Lett. 2021, 6, 2038-47.
118. Qin, J.; Liu, X.; Yin, C.; Gao, F. Carrier dynamics and evaluation of lasing actions in halide perovskites. Trends. Chem. 2021, 3, 34-46.
119. Alnuaimi, A.; Almansouri, I.; Nayfeh, A. Performance of planar heterojunction perovskite solar cells under light concentration. AIP. Advances. 2016, 6, 115012.
120. Saidaminov, M. I.; Adinolfi, V.; Comin, R.; et al. Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 2015, 6, 8724.
121. Nishimura, K.; Kamarudin, M. A.; Hirotani, D.; et al. Lead-free tin-halide perovskite solar cells with 13% efficiency. Nano. Energy. 2020, 74, 104858.
122. Mavlonov, A.; Hishikawa, Y.; Kawano, Y.; Negami, T.; Hayakawa, A.; Minemoto, T. Investigating the stability of flexible perovskite solar cell modules in heat and damp-heat environments. Sol. Energy. Mater. Sol. Cells. 2025, 282, 113410.
123. Mavlonov, A.; Hishikawa, Y.; Kawano, Y.; et al. Thermal stability test on flexible perovskite solar cell modules to estimate activation energy of degradation on temperature. Sol. Energy. Mater. Sol. Cells. 2024, 277, 113148.
124. Philippe, B.; Park, B.; Lindblad, R.; et al. Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures - A photoelectron spectroscopy investigation. Chem. Mater. 2015, 27, 1720-31.
125. Kim, K.; Yang, S.; Kim, C.; et al. Non-volatile solid-state 4-(N-carbazolyl)pyridine additive for perovskite solar cells with improved thermal and operational stability. Nat. Energy. 2025, 10, 1427-38.
126. Dong, B.; Wei, M.; Li, Y.; et al. Self-assembled bilayer for perovskite solar cells with improved tolerance against thermal stresses. Nat. Energy. 2025, 10, 342-53.
127. Kim, B.; Kim, J.; Park, N. First-principles identification of the charge-shifting mechanism and ferroelectricity in hybrid halide perovskites. Sci. Rep. 2020, 10, 19635.
128. Whitfield, P. S.; Herron, N.; Guise, W. E. Structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide. Sci. Rep. 2016, 6, 35685.
129. Wu, J.; Chen, J.; Wang, H. Phase transition kinetics of MAPbI3 for tetragonal-to-orthorhombic evolution. JACS. Au. 2023, 3, 1205-12.
130. Xu, Y.; Wu, Z.; Zhang, Z. Evolved photovoltaic performance of MAPbI3 and FAPbI3-based perovskite solar cells in low-temperatures. Energy. Mater. 2024, 4, 400034.
131. Li, J.; Zhang, S.; Mohtar, M. N.; et al. Advances in multi-phase FAPbI3 perovskite: another perspective on photo-inactive δ-phase. J. Semicond. 2025, 46, 051804.
132. Liang, Y, Li, F, Cui, X. Toward stabilization of formamidinium lead iodide perovskites by defect control and composition engineering. Nat. Commun. 2024, 15, 1707.
133. Grancini, G.; Nazeeruddin, M. K. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater. 2019, 4, 4-22.
134. Wang, B.; Iocozzia, J.; Zhang, M.; et al. The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells. Chem. Soc. Rev. 2019, 48, 4854-91.
135. Asada, T.; Raifuku, I.; Murata, F.; Hayashi, K.; Sugiyama, H.; Ishikawa, Y. Influence of the electron transport layer on the performance of perovskite solar cells under low illuminance conditions. ACS. Omega. 2024, 9, 32893-900.
136. Yang, G.; Ren, Z.; Liu, K.; et al. Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat. Photon. 2021, 15, 681-9.
137. Gu, Y.; Du, H.; Li, N.; Yang, L.; Zhou, C. Effect of carrier mobility on performance of perovskite solar cells. Chin. Phys. B. 2019, 28, 048802.
138. Glowienka, D.; Galagan, Y. Light intensity analysis of photovoltaic parameters for perovskite solar cells. Adv. Mater. 2022, 34, e2105920.
139. Raifuku, I.; Ishikawa, Y.; Ito, S.; Uraoka, Y. Characteristics of perovskite solar cells under low-illuminance conditions. J. Phys. Chem. C. 2016, 120, 18986-90.
140. Guo, Z.; Jena, A. K.; Miyasaka, T. Halide perovskites for indoor photovoltaics: the next possibility. ACS. Energy. Lett. 2023, 8, 90-5.
141. Vieira, R.; de, Araújo. F.; Dhimish, M.; Guerra, M. A comprehensive review on bypass diode application on photovoltaic modules. Energies 2020, 13, 2472.
142. Tayagaki, T.; Kobayashi, H.; Yamamoto, K.; Murakami, T. N.; Yoshita, M. Effects of partial shading and temperature-dependent reverse bias behaviour on degradation in perovskite photovoltaic modules. Sol. Energy. Mater. Sol. Cells. 2025, 279, 113229.
143. Bartusiak, M. F.; Becher, J. Proton-induced coloring of multicomponent glasses. Appl. Opt. 1979, 18, 3342-6.
144. Gusarov, A. I.; Doyle, D.; Hermanne, A.; et al. Refractive-index changes caused by proton radiation in silicate optical glasses. Appl. Opt. 2002, 41, 678-84.
145. Lang, F.; Jošt, M.; Bundesmann, J.; et al. Efficient minority carrier detrapping mediating the radiation hardness of triple-cation perovskite solar cells under proton irradiation. Energy. Environ. Sci. 2019, 12, 1634-47.
146. Daly, E. J.; Drolshagen, G.; Hilgers, A.; Evans, H. D. R. Space environment analysis: experience and trends. In: Environment modeling for space-based applications, Symposium Proceedings (ESA SP-392). ESTEC Noordwijk, 18-20 September 1996. https://adsabs.harvard.edu/full/1996ESASP.392...15D (accessed 2026-02-4).
147. Boldyreva, A. G.; Akbulatov, A. F.; Tsarev, S. A.; et al. γ-ray-induced degradation in the triple-cation perovskite solar cells. J. Phys. Chem. Lett. 2019, 10, 813-8.
148. Unger, E. L.; Kegelmann, L.; Suchan, K.; Sörell, D.; Korte, L.; Albrecht, S. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J. Mater. Chem. A. 2017, 5, 11401-9.
149. Hoke, E. T.; Slotcavage, D. J.; Dohner, E. R.; Bowring, A. R.; Karunadasa, H. I.; McGehee, M. D. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 2015, 6, 613-7.
150. Koshiishi, H.; Matsumoto, H.; Chishiki, A.; Goka, T.; Omodaka, T. Evaluation of the neutron radiation environment inside the International Space Station based on the Bonner Ball Neutron Detector experiment. Radiat. Meas. 2007, 42, 1510-20.
151. Armstrong, T. W.; Colborn, B. L. Predictions of secondary neutrons and their importance to radiation effects inside the International Space Station. Radiat. Meas. 2001, 33, 229-34.
152. Paternò, G. M.; Robbiano, V.; Santarelli, L.; et al. Perovskite solar cell resilience to fast neutrons. Sustain. Energy. Fuels. 2019, 3, 2561-6.
153. Kim, S.; Choi, M.; Park, J. Cerium-doped oxide-based materials for energy and environmental applications. Crystals 2023, 13, 1631.
154. Wilt, D.; Snyder, N.; Jenkins, P. Novel flexible solar cell coverglass for space photovoltaic devices. In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), 16-21 June, 2013; pp. 2835-9.
155. Yan, G.; Wang, J.; Liu, J.; Liu, Y.; Wu, R.; Wang, R. Electroluminescence analysis of VOC degradation of individual subcell in GaInP/GaAs/Ge space solar cells irradiated by 1.0 MeV electrons. J. Lumin. 2020, 219, 116905.
156. Bertotti, L.; Flores, C.; Garner, J. The ASGA experiment on EURECA platform: testing of advanced GaAs solar cells in LEO. In Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference, September 26-30, 1988; pp. 1002-6.
157. Aburaya, T. Analysis of 10 years' flight data of solar cell monitor on ETS-V. Solar. Sol. Energy. Mater. Sol. Cells. 2001, 68, 15-22.
158. Verduci, R.; Romano, V.; Brunetti, G.; et al. Solar energy in space applications: review and technology perspectives. Adv. Energy. Mater. 2022, 12, 2200125.
159. Jia, C.; Li, Z.; Wan, Z.; et al. Ultra-thin perovskite solar cells with high specific power density based on colorless polyimide substrates. Nano. Energy. 2024, 131, 110259.
160. Hailegnaw, B.; Demchyshyn, S.; Putz, C.; et al. Flexible quasi-2D perovskite solar cells with high specific power and improved stability for energy-autonomous drones. Nat. Energy. 2024, 9, 677-90.
161. Liu, P.; Wang, H.; Niu, T.; et al. Ambient scalable fabrication of high-performance flexible perovskite solar cells. Energy. Environ. Sci. 2024, 17, 7069-80.
162. Lee, J. H.; Nocerino, J. C.; Hardy, B. S. On-orbit characterization of space solar cells on nano-satellites. In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 5-10 June, 2016; pp. 1331-6.
163. Leipold, M.; Eiden, M.; Garner, C.; et al. Solar sail technology development and demonstration. Acta. Astronaut. 2003, 52, 317-26.
164. Chamberlain, M. K.; Kiefer, S. H.; Lapointe, M.; Lacorte, P. On-orbit flight testing of the roll-out solar array. Acta. Astronaut. 2021, 179, 407-14.
165. Yun, Y.; Moon, S.; Kim, S.; Lee, J. Flexible fabric-based GaAs thin-film solar cell for wearable energy harvesting applications. Sol. Energ. Mat. Sol. Cells. 2022, 246, 111930.
166. Gao, D.; Li, B.; Sun, X.; et al. High-efficiency perovskite solar cells enabled by suppressing intermolecular aggregation in hole-selective contacts. Nat. Photon. 2025, 19, 1070-7.
167. Wang, G.; Su, Q.; Tang, H.; et al. 27.09%-efficiency silicon heterojunction back contact solar cell and going beyond. Nat. Commun. 2024, 15, 8931.
168. France, R. M.; Geisz, J. F.; Song, T.; et al. Triple-junction solar cells with 39.5% terrestrial and 34.2% space efficiency enabled by thick quantum well superlattices. Joule 2022, 6, 1121-35.
169. Statler, R. L.; Walker, D. H. Three-year performance of the NTS-2 solar cell experiment. 1980. https://ntrs.nasa.gov/api/citations/19810009037/downloads/19810009037.pdf (accessed 2026-02-4).
170. Li, R.; Yao, L.; Sun, J.; et al. Challenges and perspectives for the perovskite module research. Chem 2025, 11, 102542.
171. Nikbakht, H.; Mariani, P.; Vesce, L.; et al. Upscaling perovskite photovoltaics: from 156 cm2 modules to 073 M2 panels. Adv. Sci. 2025, 12, e2416316.
172. Yan, B.; Qin, L.; Tao, S.; Fang, G. Development and challenges of large space flexible solar arrays. SSPW 2025, 2, 33-42.
173. Horowitz, K. A. W.; Remo, T.; Smith, B.; Ptak, A. A techno-economic analysis and cost reduction roadmap for III-V solar cells. Golden, CO: National Renewable Energy Laboratory, 2018. https://docs.nlr.gov/docs/fy19osti/72103.pdf (accessed 2026-02-4).
174. Woodhouse, M.; Smith, B.; Ramdas, A.; Margolis, R. Crystalline silicon photovoltaic module manufacturing costs and sustainable pricing: 1H 2018 Benchmark and cost reduction road map. Golden, CO: National Renewable Energy Laboratory, 2019. https://docs.nrel.gov/docs/fy19osti/72134.pdf (accessed 2026-02-4).
175. Liu, X.; Zhang, J.; Wang, B.; et al. Perovskite solar modules with high efficiency exceeding 20%: from laboratory to industrial community. Joule 2025, 9, 102056.
176. Cai, M.; Wu, Y.; Chen, H.; Yang, X.; Qiang, Y.; Han, L. Cost-performance analysis of perovskite solar modules. Adv. Sci. 2017, 4, 1600269.
177. Sengupta, A.; Afroz, M. A.; Sharma, B.; et al. Commercialization of perovskite solar cells: opportunities and challenges. Sustain. Energy. Fuels. 2025, 9, 3999-4022.
178. Zhao, G.; Hughes, D.; Beynon, D.; et al. Perovskite photovoltaics for aerospace applications - life cycle assessment and cost analysis. Solar. Energy. 2024, 274, 112602.
179. Boley, A. C.; Byers, M. Satellite mega-constellations create risks in Low Earth Orbit, the atmosphere and on Earth. Sci. Rep. 2021, 11, 10642.
180. Boretti, A. A narrative review of solar electric propulsion for space missions: technological progress, market opportunities, geopolitical considerations, and safety challenges. J. Space. Saf. Eng. 2025, 12, 549-59.
181. Shi, L.; Bucknall, M. P.; Young, T. L.; et al. Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells. Science 2020, 368, eaba2412.
182. Papež, N.; Dallaev, R.; Ţălu, Ş.; Kaštyl, J. Overview of the current state of gallium arsenide-based solar cells. Materials 2021, 14, 3075.
183. Shin, G.; Kwon, S.; Lee, H. Reliability analysis of the 300W GaInP/GaAs/Ge solar cell array using PCM. J. Astron. Space. Sci. 2019, 36, 69-74.
184. Vaillon, R.; Parola, S.; Lamnatou, C.; Chemisana, D. Solar cells operating under thermal stress. Cell. Rep. Phys. Sci. 2020, 1, 100267.
185. Angmo, D.; Yan, S.; Liang, D.; et al. Toward rollable printed perovskite solar cells for deployment in low-earth orbit space applications. ACS. Appl. Energy. Mater. 2024, 7, 1777-91.
186. Manning, C. G. Technology readiness levels. https://www.nasa.gov/directorates/somd/space-communications-navigation-program/technology-readiness-levels/ (accessed 2026-02-4).






