REFERENCES
1. Yang, X.; Zhang, H.; Liu, Q.; Jiang, G. The Li-ion battery industry and its challenges. Nat. Rev. Chem. 2025, 9, 497-8.
2. Xie, Z.; Sun, L.; Sajid, M.; Feng, Y.; Lv, Z.; Chen, W. Rechargeable alkali metal-chlorine batteries: advances, challenges, and future perspectives. Chem. Soc. Rev. 2024, 53, 8424-56.
3. Kim, J.; Kim, Y.; Yoo, J.; Kwon, G.; Ko, Y.; Kang, K. Organic batteries for a greener rechargeable world. Nat. Rev. Mater. 2022, 8, 54-70.
5. Xie, J.; Lu, Y. C. Designing nonflammable liquid electrolytes for safe Li-ion batteries. Adv. Mater. 2025, 37, e2312451.
6. Chen, S.; Zhang, M.; Zou, P.; Sun, B.; Tao, S. Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy. Environ. Sci. 2022, 15, 1805-39.
7. Dong, D.; Zhao, C. X.; Zhang, X.; Wang, C. Aqueous electrolytes: from salt in water to water in salt and beyond. Adv. Mater. 2025, 37, e2418700.
8. Zhang, H.; Liu, X.; Li, H.; Hasa, I.; Passerini, S. Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem. Int. Ed. 2021, 60, 598-616.
9. Hsieh, Y.; Tuan, H. Emerging trends and prospects in aqueous electrolyte design: elevating energy density and power density of multivalent metal-ion batteries. Energy. Stor. Mater. 2024, 68, 103361.
10. Suo, L.; Borodin, O.; Gao, T.; et al. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015, 350, 938-43.
11. Wei, J.; Zhang, P.; Sun, J.; et al. Advanced electrolytes for high-performance aqueous zinc-ion batteries. Chem. Soc. Rev. 2024, 53, 10335-69.
12. Supiňková, T.; Zukalová, M.; Kakavas, N.; et al. Electrolyte effects and stability of Zn/Li dual-ion batteries with water-in-salt electrolytes. J. Power. Sources. 2025, 655, 237983.
13. Jaumaux, P.; Yang, X.; Zhang, B.; et al. Localized water-in-salt electrolyte for aqueous lithium-ion batteries. Angew. Chem. Int. Ed. 2021, 60, 19965-73.
14. Xie, J.; Lin, D.; Lei, H.; et al. Electrolyte and interphase engineering of aqueous batteries beyond "water-in-salt" strategy. Adv. Mater. 2024, 36, e2306508.
15. Khan, Z.; Kumar, D.; Crispin, X. Does water-in-salt electrolyte subdue issues of Zn batteries? Adv. Mater. 2023, 35, e2300369.
16. Dong, S.; Wang, Y.; Chen, C.; Shen, L.; Zhang, X. Niobium tungsten oxide in a green water-in-salt electrolyte enables ultra-stable aqueous lithium-ion capacitors. Nanomicro. Lett. 2020, 12, 168.
17. Gomez Vazquez, D.; Pollard, T. P.; Mars, J.; et al. Creating water-in-salt-like environment using coordinating anions in non-concentrated aqueous electrolytes for efficient Zn batteries. Energy. Environ. Sci. 2023, 16, 1982-91.
18. Jiang, L.; Liu, L.; Yue, J.; et al. High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte. Adv. Mater. 2020, 32, e1904427.
19. Flores, L.; Martin, J.; Toudret, P.; Bayle, P.; Martinet, S. A comprehensive study of highly concentrated Lithium‑ion aqueous electrolytes: from structural characterizations to electrochemical properties. Electrochim. Acta. 2025, 536, 146680.
20. Borodin, O.; Suo, L.; Gobet, M.; et al. Liquid structure with nano-heterogeneity promotes cationic transport in concentrated electrolytes. ACS. Nano. 2017, 11, 10462-71.
21. Goloviznina, K.; Serva, A.; Salanne, M. Formation of polymer-like nanochains with short lithium-lithium distances in a water-in-salt electrolyte. J. Am. Chem. Soc. 2024, 146, 8142-8.
22. Liu, K.; Epsztein, R.; Lin, S.; Qu, J.; Sun, M. Ion-ion selectivity of synthetic membranes with confined nanostructures. ACS. Nano. 2024, 18, 21633-50.
23. Quan, T.; Härk, E.; Xu, Y.; et al. Unveiling the formation of solid electrolyte interphase and its temperature dependence in "water-in-salt" supercapacitors. ACS. Appl. Mater. Interfaces. 2021, 13, 3979-90.
24. Cheng, C.; Jiang, G.; Simon, G. P.; Liu, J. Z.; Li, D. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat. Nanotechnol. 2018, 13, 685-90.
25. Raidongia, K.; Huang, J. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 2012, 134, 16528-31.
26. Iamprasertkun, P.; Ejigu, A.; Dryfe, R. A. W. Understanding the electrochemistry of "water-in-salt" electrolytes: basal plane highly ordered pyrolytic graphite as a model system. Chem. Sci. 2020, 11, 6978-89.
27. Qin, S.; Liu, D.; Wang, G.; et al. High and stable ionic conductivity in 2D nanofluidic ion channels between boron nitride layers. J. Am. Chem. Soc. 2017, 139, 6314-20.
28. Wang, P.; Zhang, K.; Liao, J.; et al. Mesoscale dynamics of electrosorbed ions in fast-charging carbon-based nanoporous electrodes. Nat. Nanotechnol. 2025, 20, 1228-36.
29. Kondrat, S.; Pérez, C. R.; Presser, V.; Gogotsi, Y.; Kornyshev, A. A. Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy. Environ. Sci. 2012, 5, 6474.
30. Wang, Y.; Hao, X.; Kang, Y.; et al. Enhanced ion conductivity of “water-in-salt” electrolytes by nanochannel membranes. J. Mater. Chem. A. 2023, 11, 1394-402.
31. Liu, X.; Lyu, D.; Merlet, C.; et al. Structural disorder determines capacitance in nanoporous carbons. Science 2024, 384, 321-5.
32. Mo, T.; Wang, Z.; Zeng, L.; et al. Energy storage mechanism in supercapacitors with porous graphdiynes: effects of pore topology and electrode metallicity. Adv. Mater. 2023, 35, e2301118.
33. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory. Comput. 2008, 4, 435-47.
34. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 2002, 117, 5179-97.
35. Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 2002, 91, 6269-71.
36. Doherty, B.; Zhong, X.; Gathiaka, S.; Li, B.; Acevedo, O. Revisiting OPLS force field parameters for ionic liquid simulations. J. Chem. Theory. Comput. 2017, 13, 6131-45.
37. Jensen, K. P.; Jorgensen, W. L. Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions. J. Chem. Theory. Comput. 2006, 2, 1499-509.
38. Martínez, L.; Andrade, R.; Birgin, E. G.; Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157-64.
39. Gingrich, T. R.; Wilson, M. On the Ewald summation of Gaussian charges for the simulation of metallic surfaces. Chem. Phys. Lett. 2010, 500, 178-83.
40. Kondrat, S.; Feng, G.; Bresme, F.; Urbakh, M.; Kornyshev, A. A. Theory and simulations of ionic liquids in nanoconfinement. Chem. Rev. 2023, 123, 6668-715.
41. Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14, 33-8.
42. Mo, T.; Bi, S.; Zhang, Y.; et al. Ion structure transition enhances charging dynamics in subnanometer pores. ACS. Nano. 2020, 14, 2395-403.
43. Liu, P.; Song, Z.; Miao, L.; Lv, Y.; Gan, L.; Liu, M. Boosting spatial charge storage in ion-compatible pores of carbon superstructures for advanced zinc-ion capacitors. Small 2024, 20, e2400774.
44. Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew. Chem. Int. 2008, 47, 3392-5.
45. Liu, X.; Lee, S.; Seifert, S.; et al. Revealing the correlation between the solvation structures and the transport properties of water-in-salt electrolytes. Chem. Mater. 2023, 35, 2088-94.
46. Kim, J.; Koo, B.; Lim, J.; et al. Dynamic water promotes lithium-ion transport in superconcentrated and eutectic aqueous electrolytes. ACS. Energy. Lett. 2021, 7, 189-96.
47. Chen, Y.; Atwi, R.; Nguyen, D. T.; et al. From bulk to interface: solvent exchange dynamics and their role in ion transport and the interfacial model of rechargeable magnesium batteries. J. Am. Chem. Soc. 2024, 146, 12984-99.
48. Hou, T.; Fong, K. D.; Wang, J.; Persson, K. A. The solvation structure, transport properties and reduction behavior of carbonate-based electrolytes of lithium-ion batteries. Chem. Sci. 2021, 12, 14740-51.
49. Li, C. Y.; Chen, M.; Liu, S.; et al. Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations. Nat. Commun. 2022, 13, 5330.
50. Breitsprecher, K.; Holm, C.; Kondrat, S. Charge me slowly, I am in a hurry: optimizing charge-discharge cycles in nanoporous supercapacitors. ACS. Nano. 2018, 12, 9733-41.
51. Péan, C.; Merlet, C.; Rotenberg, B.; et al. On the dynamics of charging in nanoporous carbon-based supercapacitors. ACS. Nano. 2014, 8, 1576-83.
52. Zhang, Q.; Xu, S.; Wang, Y.; Dou, Q.; Sun, Y.; Yan, X. Temperature-dependent structure and performance evolution of “water-in-salt” electrolyte for supercapacitor. Energy. Stor. Mater. 2023, 55, 205-13.
53. Forse, A. C.; Merlet, C.; Griffin, J. M.; Grey, C. P. New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 2016, 138, 5731-44.
54. Kondrat, S.; Wu, P.; Qiao, R.; Kornyshev, A. A. Accelerating charging dynamics in subnanometre pores. Nat. Mater. 2014, 13, 387-93.






