REFERENCES
1. Perry, S. C.; Pangotra, D.; Vieira, L.; et al. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 2019, 3, 442-58.
2. Sun, Y.; Han, L.; Strasser, P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem. Soc. Rev. 2020, 49, 6605-31.
3. Freese, T.; Meijer, J. T.; Feringa, B. L.; Beil, S. B. An organic perspective on photocatalytic production of hydrogen peroxide. Nat. Catal. 2023, 6, 553-8.
4. Baur, E.; Neuweiler, C. Über photolytische bildung von hydroperoxyd. Helv. Chim. Acta. 1927, 10, 901-7.
5. Hao, F.; Yang, C.; Lv, X.; et al. Photo-driven quasi-topological transformation exposing highly active nitrogen cation sites for enhanced photocatalytic H2O2 production. Angew. Chem. Int. Ed. 2023, 62, e202315456.
6. Liao, Q.; Sun, Q.; Xu, H.; et al. Regulating relative nitrogen locations of diazine functionalized covalent organic frameworks for overall H2O2 photosynthesis. Angew. Chem. Int. Ed. 2023, 62, e202310556.
7. Das, P.; Roeser, J.; Thomas, A. Solar light driven H2O2 production and selective oxidations using a covalent organic framework photocatalyst prepared by a multicomponent reaction. Angew. Chem. Int. Ed. 2023, 62, e202304349.
8. Liu, R.; Chen, Y.; Yu, H.; et al. Linkage-engineered donor-acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air. Nat. Catal. 2024, 7, 195-206.
9. Cao, L.; Wang, C.; Wang, H.; et al. Rationally Designed cyclooctatetrathiophene-based porous aromatic frameworks (COTh-PAFs) for efficient photocatalytic hydrogen peroxide production. Angew. Chem. Int. Ed. 2024, 63, e202402095.
10. Zhou, E.; Wang, F.; Zhang, X.; Hui, Y.; Wang, Y. Cyanide-based covalent organic frameworks for enhanced overall photocatalytic hydrogen peroxide production. Angew. Chem. Int. Ed. 2024, 63, e202400999.
11. Yue, J. Y.; Luo, J. X.; Pan, Z. X.; et al. Regulating the topology of covalent organic frameworks for boosting overall H2O2 photogeneration. Angew. Chem. Int. Ed. 2024, 63, e202405763.
12. Dong, P.; Xu, X.; Wu, T.; et al. Stepwise protonation of three-dimensional covalent organic frameworks for enhancing hydrogen peroxide photosynthesis. Angew. Chem. Int. Ed. 2024, 63, e202405313.
13. Wu, W.; Li, Z.; Liu, S.; et al. Pyridine-based covalent organic frameworks with pyridyl-imine structures for boosting photocatalytic H2O2 production via one-step 2e- oxygen reduction. Angew. Chem. Int. Ed. 2024, 63, e202404563.
14. Li, L.; Lv, X.; Xue, Y.; Shao, H.; Zheng, G.; Han, Q. Custom-design of strong electron/proton extractor on COFs for efficient photocatalytic H2O2 production. Angew. Chem. Int. Ed. 2024, 63, e202320218.
15. Zhang, X.; Cheng, S.; Chen, C.; et al. Keto-anthraquinone covalent organic framework for H2O2 photosynthesis with oxygen and alkaline water. Nat. Commun. 2024, 15, 2649.
16. Liu, W.; Su, Q.; Ju, P.; et al. A Hydrazone-based covalent organic framework as an efficient and reusable photocatalyst for the cross-dehydrogenative coupling reaction of N-aryltetrahydroisoquinolines. ChemSusChem 2017, 10, 664-9.
17. Zhi, Y.; Li, Z.; Feng, X.; et al. Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations. J. Mater. Chem. A. 2017, 5, 22933-8.
18. Chen, R.; Shi, J. L.; Ma, Y.; Lin, G.; Lang, X.; Wang, C. Designed synthesis of a 2D porphyrin-Based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew. Chem. Int. Ed. 2019, 58, 6430-4.
19. Wei, H.; Guo, Z.; Liang, X.; Chen, P.; Liu, H.; Xing, H. Selective photooxidation of amines and sulfides triggered by a superoxide radical using a novel visible-light-responsive metal-organic framework. ACS. Appl. Mater. Interfaces. 2019, 11, 3016-23.
20. Li, S.; Li, L.; Li, Y.; et al. Fully Conjugated donor-acceptor covalent organic frameworks for photocatalytic oxidative amine coupling and thioamide cyclization. ACS. Catal. 2020, 10, 8717-26.
21. He, H.; Fang, X.; Zhai, D.; et al. A Porphyrin-based covalent organic framework for metal-free photocatalytic aerobic oxidative coupling of amines. Chem. Eur. J. 2021, 27, 14390-5.
22. Yang, F.; Li, C. C.; Xu, C. C.; et al. A covalent organic framework as a photocatalyst for window ledge cross-dehydrogenative coupling reactions. Chem. Commun. 2022, 58, 1530-3.
23. Cheng, Y.; Ji, W.; Wu, X.; Ding, X.; Liu, X.; Han, B. Persistent radical cation sp2 carbon-covalent organic framework for photocatalytic oxidative organic transformations. Appl. Catal. B. Environ. 2022, 306, 121110.
24. Jiménez-Almarza, A.; López-Magano, A.; Mas-Ballesté, R.; Alemán, J. Tuning the activity-stability balance of photocatalytic organic materials for oxidative coupling reactions. ACS. Appl. Mater. Interfaces. 2022, 14, 16258-68.
25. Liu, M.; Liu, J.; Li, J.; et al. Blending aryl ketone in covalent organic frameworks to promote photoinduced electron transfer. J. Am. Chem. Soc. 2023, 145, 9198-206.
26. Liu, Y.; Jiang, X.; Chen, L.; et al. Rational design of a phenothiazine-based donor-acceptor covalent organic framework for enhanced photocatalytic oxidative coupling of amines and cyclization of thioamides. J. Mater. Chem. A. 2023, 11, 1208-15.
27. Kong, K.; Zhong, H.; Chen, D.; Zhang, F.; Li, X.; Wang, R. Carbon nitride quantum dots decorated with cyano groups for boosting photocatalytic hydrogen peroxide production. Green. Energy. Environ. 2025, 10, 1551-8.
28. Liu, J.; Tuo, C.; Xiao, W. Y.; et al. Constructing donor-acceptor covalent organic frameworks for highly efficient H2O2 photosynthesis coupled with oxidative organic transformations. Angew. Chem. Int. Ed. 2025, 64, e202416240.
29. Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166-70.
31. Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 2013, 42, 548-68.
32. Das, S.; Heasman, P.; Ben, T.; Qiu, S. Porous organic materials: strategic design and structure-function correlation. Chem. Rev. 2017, 117, 1515-63.
33. Jin, Y.; Hu, Y.; Zhang, W. Tessellated multiporous two-dimensional covalent organic frameworks. Nat. Rev. Chem. 2017, 1, 0056.
34. Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585.
35. Zhao, W.; Xia, L.; Liu, X. Covalent organic frameworks (COFs): perspectives of industrialization. CrystEngComm 2018, 20, 1613-34.
36. Prabhakar Vattikuti, S. V.; To Hoai, N.; Zeng, J.; et al. Pouch-type asymmetric supercapacitor based on nickel-cobalt metal-organic framework. Materials 2023, 16, 2423.
37. Wei, P. F.; Qi, M. Z.; Wang, Z. P.; et al. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis. J. Am. Chem. Soc. 2018, 140, 4623-31.
38. Kang, X.; Wu, X.; Han, X.; Yuan, C.; Liu, Y.; Cui, Y. Rational synthesis of interpenetrated 3D covalent organic frameworks for asymmetric photocatalysis. Chem. Sci. 2019, 11, 1494-502.
39. Wang, K.; Kang, X.; Yuan, C.; Han, X.; Liu, Y.; Cui, Y. Porous 2D and 3D covalent organic frameworks with dimensionality-dependent photocatalytic activity in promoting radical ring-opening polymerization. Angew. Chem. Int. Ed. 2021, 60, 19466-76.
40. Wu, C. J.; Li, X. Y.; Li, T. R.; et al. Natural sunlight photocatalytic synthesis of benzoxazole-bridged covalent organic framework for photocatalysis. J. Am. Chem. Soc. 2022, 144, 18750-5.
41. Nguyen, H. L.; Gropp, C.; Ma, Y.; Zhu, C.; Yaghi, O. M. 3D covalent organic frameworks selectively crystallized through conformational design. J. Am. Chem. Soc. 2020, 142, 20335-9.
42. Han, W. K.; Liu, Y.; Yan, X.; Jiang, Y.; Zhang, J.; Gu, Z. G. Integrating light-harvesting ruthenium(II)-based units into three-dimensional metal covalent organic frameworks for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 2022, 61, e202208791.
43. Yan, X.; Wang, F.; Su, X.; et al. A redox-active covalent organic framework with highly accessible aniline-fused quinonoid units affords efficient proton charge storage. Adv. Mater. 2023, 35, e2305037.
44. Davies, J. A.; Ronson, T. K.; Nitschke, J. R. Triamine and tetramine edge-length matching drives heteroleptic triangular and tetragonal prism assembly. J. Am. Chem. Soc. 2024, 146, 5215-23.
45. Yang, M. Y.; Zhang, S. B.; Zhang, M.; et al. Three-motif molecular junction type covalent organic frameworks for efficient photocatalytic aerobic oxidation. J. Am. Chem. Soc. 2024, 146, 3396-404.
46. Fang, L.; Xu, H.; Qiu, S.; et al. Autocatalytic interfacial synthesis of self-standing amide-linked covalent organic framework membranes. Angew. Chem. Int. Ed. 2025, 64, e202423220.
47. Guo, M.; Jayakumar, S.; Luo, M.; et al. The promotion effect of π-π interactions in Pd NPs catalysed selective hydrogenation. Nat. Commun. 2022, 13, 1770.
48. Gutiérrez, L.; Martin-diaconescu, V.; Casadevall, C.; et al. Low oxidation state cobalt center stabilized by a covalent organic framework to promote hydroboration of olefins. ACS. Catal. 2023, 13, 3044-54.
49. Fang, Y.; Liu, Y.; Huang, H.; et al. Design and synthesis of broadband absorption covalent organic framework for efficient artificial photocatalytic amine coupling. Nat. Commun. 2024, 15, 4856.
50. Zhu, Y.; Huang, D.; Wang, W.; Liu, G.; Ding, C.; Xiang, Y. Sequential oxidation/cyclization of readily available imine linkages to access benzoxazole-linked covalent organic frameworks. Angew. Chem. Int. Ed. 2024, 63, e202319909.
51. Wang, Z.; Song, Q.; He, C.; Feng, P.; Zhao, L.; Duan, C. Naphthalene-based donor-acceptor covalent organic frameworks as an electron distribution regulator for boosting photocatalysis. Chem. Commun. 2024, 60, 4793-6.
52. Zhang, G.; Tsujimoto, M.; Packwood, D.; et al. Construction of a hierarchical architecture of covalent organic frameworks via a postsynthetic approach. J. Am. Chem. Soc. 2018, 140, 2602-9.
53. Zhang, S.; Cheng, G.; Guo, L.; Wang, N.; Tan, B.; Jin, S. Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting. Angew. Chem. Int. Ed. 2020, 59, 6007-14.
54. Wang, S.; Guan, B. Y.; Wang, X.; Lou, X. W. D. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 15145-8.
55. Narani, A.; Gao, Y.; Zhang, J.; Beach, C. A.; Foston, M. Lignin monomer quantification without standards: using gas chromatography with dual quantitative carbon detection and mass spectrometry. Anal. Chem. 2025, 97, 8286-92.
56. Nutting, J. E.; Rafiee, M.; Stahl, S. S. Tetramethylpiperidine N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and related N-oxyl species: electrochemical properties and their use in electrocatalytic reactions. Chem. Rev. 2018, 118, 4834-85.
57. Beejapur, H. A.; Zhang, Q.; Hu, K.; Zhu, L.; Wang, J.; Ye, Z. TEMPO in chemical transformations: from homogeneous to heterogeneous. ACS. Catal. 2019, 9, 2777-830.
58. Chen, Z.; Wang, J.; Hao, M.; et al. Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance. Nat. Commun. 2023, 14, 1106.