REFERENCES

1. Roselli, L.; Borges, Carvalho. N.; Alimenti, F.; et al. Smart surfaces: large area electronics systems for internet of things enabled by energy harvesting. Proc. IEEE. 2014, 102, 1723-46.

2. Zahid Kausar, A.; Reza, A. W.; Saleh, M. U.; Ramiah, H. Energizing wireless sensor networks by energy harvesting systems: scopes, challenges and approaches. Renew. Sustain. Energy. Rev. 2014, 38, 973-89.

3. Kansal, A.; Hsu, J.; Srivastava, M.; Raghunathan, V. Harvesting aware power management for sensor networks. In Proceedings of the 43rd Annual Conference on Design Automation - DAC ’06. New York: ACM Press, 2006; p. 651.

4. Ali, A.; Shaukat, H.; Elahi, H.; et al. Advancements in energy harvesting techniques for sustainable IoT devices. Results. Eng. 2025, 26, 104820.

5. Vahidhosseini, S. M.; Rashidi, S.; Ehsani, M. H. Enhancing sustainable energy harvesting with triboelectric nanogenerators (TENGs): advanced materials and performance enhancement strategies. Renew. Sustain. Energy. Rev. 2025, 216, 115663.

6. Muzafar, S. Energy harvesting models and techniques for green IoT: a review. In: Ponnusamy V, Zaman N, Jung LT, Amin AHM, editors. Role of IoT in green energy systems. IGI Global; 2021. pp. 117-43.

7. Lu, M.; Fu, G.; Osman, N. B.; Konbr, U. Green energy harvesting strategies on edge-based urban computing in sustainable internet of things. Sustain. Cities. Soc. 2021, 75, 103349.

8. Lewis, N. S.; Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA. 2006, 103, 15729-35.

9. Cheng, T.; Shao, J.; Wang, Z. L. Triboelectric nanogenerators. Nat. Rev. Methods. Primers. 2023, 3, 220.

10. Wu, C.; Wang, A. C.; Ding, W.; Guo, H.; Wang, Z. L. Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy. Mater. 2019, 9, 1802906.

11. Park, H.; Cho, Y.; Yoon, H.; Ryu, H. Highly compact rotational triboelectric nanogenerator for self-powered BLE operation and self-rechargeable system. Chem. Eng. J. 2025, 519, 164941.

12. Zhu, G.; Peng, B.; Chen, J.; Jing, Q.; Lin, Wang. Z. Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano. Energy. 2015, 14, 126-38.

13. Tian, J.; Chen, X.; Wang, Z. L. Environmental energy harvesting based on triboelectric nanogenerators. Nanotechnology 2020, 31, 242001.

14. Kaneko, S.; Nakamura, T.; Inada, F.; et al. Chapter 5 - Vibration induced by pressure waves in piping. In: Flow-induced Vibrations. Elsevier; 2014. pp. 197-275.

15. Bamidele, O. E.; Ahmed, W. H.; Hassan, M. Two-phase flow induced vibration of piping structure with flow restricting orifices. Int. J. Multiphas. Flow. 2019, 113, 59-70.

16. Wang, K.; Yao, Y.; Liu, Y.; et al. Self-powered system for real-time wireless monitoring and early warning of UAV motor vibration based on triboelectric nanogenerator. Nano. Energy. 2024, 129, 110012.

17. Almardi, J. M.; Bo, X.; Shi, J.; Firdous, I.; Daoud, W. A. Drone rotational triboelectric nanogenerator for supplemental power generation and RPM sensing. Nano. Energy. 2025, 135, 110614.

18. Guan, X.; Yao, Y.; Wang, K.; et al. Wireless online rotation monitoring system for UAV motors based on a soft-contact triboelectric nanogenerator. ACS. Appl. Mater. Interfaces. 2024, 16, 46516.

19. Sun, R.; Zhou, S.; Cheng, L. Ultra-low frequency vibration energy harvesting: mechanisms, enhancement techniques, and scaling laws. Energy. Convers. Manag. 2023, 276, 116585.

20. Ashraf, K.; Khir, M. H. M.; Dennis, J. Energy harvesting in a low frequency environment. In 2011 National Postgraduate Conference; 2011, pp. 1-5.

21. Yang, X.; Lai, S.; Wang, C.; Wang, J.; Ding, H. On a spring-assisted multi-stable hybrid-integrated vibration energy harvester for ultra-low-frequency excitations. Energy 2022, 252, 124028.

22. Xu, M.; Wang, P.; Wang, Y.; et al. A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self‐powered vibration sensing. Adv. Energy. Mater. 2018, 8, 1702432.

23. Wu, C.; Liu, R.; Wang, J.; Zi, Y.; Lin, L.; Wang, Z. L. A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy. Nano. Energy. 2017, 32, 287-93.

24. Wang, W.; Xu, J.; Zheng, H.; et al. A spring-assisted hybrid triboelectric-electromagnetic nanogenerator for harvesting low-frequency vibration energy and creating a self-powered security system. Nanoscale 2018, 10, 14747-54.

25. Tiruneh, D. M.; Jang, G.; Kwon, K.; Ryu, H. Highly compact inertia-driven triboelectric nanogenerator for self-powered wireless CO2 monitoring via fine-vibration harvesting. Nano. Energy. 2025, 138, 110872.

26. Kim, J.; Lee, D.; Ryu, H.; et al. Triboelectric nanogenerators for battery‐free wireless sensor system using multi‐degree of freedom vibration. Adv. Mater. Technol. 2024, 9, 2301427.

27. Chen, J.; Zhu, G.; Yang, W.; et al. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 2013, 25, 6094-9.

28. Ozen, A.; Ozel, F.; Kınas, Z.; Karabiber, A.; Polat, S. Spring assisted triboelectric nanogenerator based on sepiolite doped polyacrylonitrile nanofibers. Sustain. Energy. Technol. Assess. 2021, 47, 101492.

29. Wang, X.; Yin, G.; Sun, T.; Xu, X.; Rasool, G.; Abbas, K. Mechanical vibration energy harvesting and vibration monitoring based on triboelectric nanogenerators. Energy. Technol. 2024, 12, 2300931.

30. Zhang, H.; Liu, Z.; Xie, X.; Wu, J.; Shi, Q. Self-powered sensing and wireless communication synergic systems enabled by triboelectric nanogenerators. Nanoenergy. Adv. 2024, 4, 367-98.

31. Xu, Z.; Zhang, D.; Cai, H.; Yang, Y.; Zhang, H.; Du, C. Performance enhancement of triboelectric nanogenerators using contact-separation mode in conjunction with the sliding mode and multifunctional application for motion monitoring. Nano. Energy. 2022, 102, 107719.

32. Liu, D.; Gao, Y.; Zhou, L.; Wang, J.; Wang, Z. L. Recent advances in high-performance triboelectric nanogenerators. Nano. Res. 2023, 16, 11698-717.

33. Wang, S.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano. Energy. 2015, 11, 436-62.

34. Wang, S.; Xie, Y.; Niu, S.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818-24.

35. Yuan, M.; Yu, W.; Jiang, Y.; et al. Triboelectric nanogenerator metamaterials for joint structural vibration mitigation and self-powered structure monitoring. Nano. Energy. 2022, 103, 107773.

36. Choi, D.; Lee, Y.; Lin, Z. H.; et al. Recent advances in triboelectric nanogenerators: from technological progress to commercial applications. ACS. Nano. 2023, 17, 11087-219.

37. Liang, X.; Liu, Z.; Feng, Y.; et al. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano. Energy. 2021, 83, 105836.

38. Wang, Z. L. From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 2021, 84, 096502.

39. Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives. Faraday. Discuss. 2014, 176, 447-58.

40. Zhang, H.; Chen, Y.; Deng, L.; et al. Efficient electrical energy conversion strategies from triboelectric nanogenerators to practical applications: a review. Nano. Energy. 2024, 132, 110383.

41. Zhang, C.; He, L.; Zhou, L.; et al. Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule 2021, 5, 1613-23.

42. Yu, J.; Kim, W.; Oh, S.; Bhatia, D.; Kim, J.; Choi, D. Toward optimizing resonance for enhanced triboelectrification of oscillating triboelectric nanogenerators. Int. J. Precis. Eng. Manuf. Green. Technol. 2023, 10, 409-19.

43. Jiang, T.; Yao, Y.; Xu, L.; Zhang, L.; Xiao, T.; Wang, Z. L. Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano. Energy. 2017, 31, 560-7.

44. Wang, X.; Xu, X.; Sun, T.; Yin, G. A triboelectric nanogenerator utilizing a crank-rocker mechanism combined with a spring cantilever structure for efficient energy harvesting and self-powered sensing applications. Electronics 2024, 13, 5032.

45. Cao, Z.; Yuan, Z.; Han, C.; et al. Hybrid triboelectric-electromagnetic nanogenerator based on a tower spring for harvesting omnidirectional vibration energy. ACS. Appl. Nano. Mater. 2022, 5, 11577-85.

46. Tan, D.; Ou, X.; Zhou, J.; et al. Magnetic tri-stable triboelectric nanogenerator for harvesting energy from low-frequency vibration. Renew. Energy. 2025, 243, 122517.

47. Hwang, H. J.; Kwon, D.; Kwon, H.; Shim, M.; Baik, J. M.; Choi, D. Integrated system of mechanical regulator and electrical circuitry on triboelectric energy harvesting with near‐field communication for low power consumption. Adv. Energy. Mater. 2025, 15, 2400481.

48. Wang, D.; Zhang, D.; Li, P.; Yang, z.; Mi, Q.; Yu, L. Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro. Lett. 2021, 13, 57.

49. Yi, N.; Zhang, C.; Wang, Z.; et al. Multi‐functional Ti3C2Tx‐Silver@Silk nanofiber composites with multi‐dimensional heterogeneous structure for versatile wearable electronics. Adv. Funct. Mater. 2025, 35, 2412307.

50. Chen, J.; Wu, K.; Gong, S.; Wang, J.; Wang, K.; Guo, H. A magnetic-multiplier-enabled hybrid generator with frequency division operation and high energy utilization efficiency. Research 2023, 6, 0168.

51. He, F.; Wang, Y.; Liu, J.; Yao, X. One-dimensional carbon based nanoreactor fabrication by electrospinning for sustainable catalysis. Exploration 2023, 3, 20220164.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/