REFERENCES

1. Demski, C.; Poortinga, W.; Whitmarsh, L.; et al. National context is a key determinant of energy security concerns across Europe. Nat. Energy. 2018, 3, 882-8.

2. Mazur, A. Does increasing energy or electricity consumption improve quality of life in industrial nations? Energy. Policy. 2011, 39, 2568-72.

3. Pasten, C.; Santamarina, J. C. Energy and quality of life. Energy. Policy. 2012, 49, 468-76.

4. Chen, B.; Zhang, X.; Gu, B. Managing nitrogen to achieve sustainable food-energy-water nexus in China. Nat. Commun. 2025, 16, 4804.

5. Li, X.; Wang, S.; Li, L.; Zu, X.; Sun, Y.; Xie, Y. Opportunity of atomically thin two-dimensional catalysts for promoting CO2 electroreduction. Acc. Chem. Res. 2020, 53, 2964-74.

6. Johnson, N.; Liebreich, M.; Kammen, D. M.; Ekins, P.; Mckenna, R.; Staffell, I. Realistic roles for hydrogen in the future energy transition. Nat. Rev. Clean. Technol. 2025, 1, 351-71.

7. Evro, S.; Oni, B. A.; Tomomewo, O. S. Carbon neutrality and hydrogen energy systems. Int. J. Hydrogen. Energy. 2024, 78, 1449-67.

8. Zhu, W.; Huang, Z.; Zhao, M.; Huang, R.; Wang, Z.; Liang, H. Hydrogen production by electrocatalysis using the reaction of acidic oxygen evolution: a review. Environ. Chem. Lett. 2022, 20, 3429-52.

9. Zhao, S.; Wang, Z.; Wang, J.; et al. Unveiling the mysteries of hydrogen spillover phenomenon in hydrogen evolution reaction: fundamentals, evidence and enhancement strategies. Coord. Chem. Rev. 2025, 524, 216321.

10. de Oliveira, D. S.; Costa, A. L.; Velasquez, C. E. Hydrogen energy for change: SWOT analysis for energy transition. Sustain. Energy. Technol. Assess. 2024, 72, 104063.

11. Butler, C.; Mays, T. J.; Sahadevan, V.; O’malley, R.; Graham, D. P.; Bowen, C. R. Hydrogen storage capacity of freeze cast microporous monolithic composites. Mater. Adv. 2024, 5, 6864-72.

12. Bhuiyan, M. M.; Siddique, Z. Hydrogen as an alternative fuel: a comprehensive review of challenges and opportunities in production, storage, and transportation. Int. J. Hydrogen. Energy. 2025, 102, 1026-44.

13. Gomonov, K.; Permana, C. T.; Handoko, C. T. The growing demand for hydrogen: сurrent trends, sectoral analysis, and future projections. Unconv. Resour. 2025, 6, 100176.

14. Szablowski, L.; Wojcik, M.; Dybinski, O. Review of steam methane reforming as a method of hydrogen production. Energy 2025, 316, 134540.

15. Wang, B.; Shao, Y.; Guo, K.; et al. Hydrogen production with near-zero carbon emission through thermochemical conversion of H2-rich industrial byproduct gas. Energy. Conv. Manag. 2025, 332, 119777.

16. Vanatta, M.; Patel, D.; Allen, T.; Cooper, D.; Craig, M. T. Technoeconomic analysis of small modular reactors decarbonizing industrial process heat. Joule 2023, 7, 713-37.

17. Rocha, F.; Georgiadis, C.; Van Droogenbroek, K.; et al. Proton exchange membrane-like alkaline water electrolysis using flow-engineered three-dimensional electrodes. Nat. Commun. 2024, 15, 7444.

18. Gunawan, D.; Zhang, J.; Li, Q.; et al. Materials advances in photocatalytic solar hydrogen production: integrating systems and economics for a sustainable future. Adv. Mater. 2024, 36, e2404618.

19. Bie, C.; Wang, L.; Yu, J. Challenges for photocatalytic overall water splitting. Chem 2022, 8, 1567-74.

20. Zheng, D.; Xue, Y.; Wang, J.; Varbanov, P. S.; Klemeš, J. J.; Yin, C. Nanocatalysts in photocatalytic water splitting for green hydrogen generation: challenges and opportunities. J. Clean. Prod. 2023, 414, 137700.

21. Zhang, J.; Hu, W.; Cao, S.; Piao, L. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano. Res. 2020, 13, 2313-22.

22. Dang, V.; Nguyen, T.; Le, M.; Nguyen, D. Q.; Wang, Y. H.; Wu, J. C. Photocatalytic hydrogen production from seawater splitting: current status, challenges, strategies and prospective applications. Chem. Eng. J. 2024, 484, 149213.

23. Li, T.; Tsubaki, N.; Jin, Z. S-scheme heterojunction in photocatalytic hydrogen production. J. Mater. Sci. Technol. 2024, 169, 82-104.

24. Zhang, X.; Qin, N.; Cui, H.; Guan, G.; Han, M. Y. Metal-facilitated photocatalytic nanohybrids: rational design and promising environmental applications. Chem. Asian. J. 2021, 16, 3038-54.

25. Liu, Z.; Tee, S. Y.; Guan, G.; Han, M. Y. Atomically substitutional engineering of transition metal dichalcogenide layers for enhancing tailored properties and superior applications. Nano. Micro. Lett. 2024, 16, 95.

26. Abhishek, B.; Arasalike, J.; Rao, A. S.; et al. Challenges in photocatalytic hydrogen evolution: Importance of photocatalysts and photocatalytic reactors. Int. J. Hydrogen. Energy. 2024, 81, 1442-66.

27. Su, H.; Wang, W.; Shi, R.; et al. Recent advances in quantum dot catalysts for hydrogen evolution: synthesis, characterization, and photocatalytic application. Carbon. Energy. 2023, 5, e280.

28. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-8.

29. Chen, Z.; Yan, Y.; Sun, K.; et al. Plasmonic coupling-boosted photothermal composite photocatalyst for achieving near-infrared photocatalytic hydrogen production. J. Colloid. Interface. Sci. 2024, 661, 12-22.

30. Shi, W.; Sun, W.; Liu, Y.; et al. Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: a novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation. Renewable. Energy. 2022, 182, 958-68.

31. Zhao, X.; You, Y.; Huang, S.; et al. Z-scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4 heterostructure under visible light. Appl. Catal. B. Environ. 2020, 278, 119251.

32. Han, X.; An, L.; Hu, Y.; et al. Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation. Appl. Catal. B. Environ. 2020, 265, 118539.

33. Lazaar, N.; Wu, S.; Qin, S.; et al. Single-atom catalysts on C3N4: minimizing single atom Pt loading for maximized photocatalytic hydrogen production efficiency. Angew. Chem. Int. Ed. 2025, 64, e202416453.

34. Tsao, C. W.; Narra, S.; Kao, J. C.; et al. Dual-plasmonic Au@Cu7S4 yolk@shell nanocrystals for photocatalytic hydrogen production across visible to near infrared spectral region. Nat. Commun. 2024, 15, 413.

35. Qi, S.; Zhu, K.; Xu, T.; et al. Water-Stable high-entropy metal-organic framework nanosheets for photocatalytic hydrogen production. Adv. Mater. 2024, 36, e2403328.

36. Wang, Y.; Qiao, Z.; Li, H.; et al. Molecular engineering for modulating photocatalytic hydrogen evolution of fully conjugated 3D covalent organic frameworks. Angew. Chem. Int. Ed. 2024, 63, e202404726.

37. Zhang, Y.; Li, Y.; Xin, X.; et al. Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting. Nat. Energy. 2023, 8, 504-14.

38. Xue, J.; Wang, X.; Xu, G.; et al. Multiple exciton generation boosting over 100% quantum efficiency photoelectrochemical photodetection. Nat. Commun. 2025, 16, 5275.

39. Qin, F.; Kang, Y.; San, X.; et al. Spontaneous exciton dissociation in Sc-doped rutile TiO2 for photocatalytic overall water splitting with an apparent quantum yield of 30. J. Am. Chem. Soc. 2025, 147, 12897-907.

40. Ning, X.; Lu, G. Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting. Nanoscale 2020, 12, 1213-23.

41. Zubair, M.; Vanhaecke, E. M. M.; Svenum, I.; Rønning, M.; Yang, J. Core-shell particles of C-doped CdS and graphene: a noble metal-free approach for efficient photocatalytic H2 generation. Green. Energy. Environ. 2020, 5, 461-72.

42. Zhang, W.; Zhao, S.; Xing, Y.; et al. Sandwich-like P-doped h-BN/ZnIn2S4 nanocomposite with direct Z-scheme heterojunction for efficient photocatalytic H2 and H2O2 evolution. Chem. Eng. J. 2022, 442, 136151.

43. Lei, H.; Zhang, J.; Wu, Z.; et al. Crystal facet-dependent photocatalytic hydrogen evolution from ultra-stable Cu-Zr/Hf heterobimetallic metal-organic frameworks. Angew. Chem. Int. Ed. 2025, 64, e202509572.

44. Chen, W.; Li, X.; Wang, F.; et al. Nonepitaxial gold-tipped ZnSe hybrid nanorods for efficient photocatalytic hydrogen production. Small 2020, 16, e1902231.

45. Chen, R.; Wang, Y.; Ma, Y.; et al. Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution. Nat. Commun. 2021, 12, 1354.

46. Zhou, P.; Chen, H.; Chao, Y.; et al. Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production. Nat. Commun. 2021, 12, 4412.

47. Xiao, Q.; Yang, T.; Guo, X.; Jin, Z. S-scheme heterojunction constructed by ZnCdS and CoWO4 nano-ions promotes photocatalytic hydrogen production. Surf. Interface. 2023, 43, 103577.

48. Hao, P.; Shan, P.; Lu, J.; et al. Magnetic-field-induced activation of S-scheme heterojunction with core-shell structure for boosted photothermal-assisted photocatalytic H2 production. Fuel 2024, 373, 132394.

49. Shi, Y.; Li, L.; Xu, Z.; Guo, F.; Shi, W. Construction of full solar-spectrum available S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production. Chem. Eng. J. 2023, 459, 141549.

50. Lu, J.; Shi, Y.; Chen, Z.; et al. Photothermal effect of carbon dots for boosted photothermal-assisted photocatalytic water/seawater splitting into hydrogen. Chem. Eng. J. 2023, 453, 139834.

51. Zhu, D.; Dong, Z.; Zhong, C.; et al. Porous microreactor chip for photocatalytic seawater splitting over 300 hours at atmospheric pressure. Nano. Micro. Lett. 2025, 17, 188.

52. Liu, T.; Lan, C.; Tang, M.; et al. Redox-mediated decoupled seawater direct splitting for H2 production. Nat. Commun. 2024, 15, 8874.

53. Zhou, J.; Tian, Y.; Gu, H.; Jiang, B. Photocatalytic hydrogen evolution: recent advances in materials, modifications, and photothermal synergy. Int. J. Hydrogen. Energy. 2025, 115, 113-30.

54. Chen, Z.; Guo, F.; Sun, H.; Shi, Y.; Shi, W. Well-designed three-dimensional hierarchical hollow tubular g-C3N4/ZnIn2S4 nanosheets heterostructure for achieving efficient visible-light photocatalytic hydrogen evolution. J. Colloid. Interface. Sci. 2022, 607, 1391-401.

55. He, Z.; Xia, Y.; He, G.; et al. Insight into synergy of Mn active sites and spin polarization electrons in Mn-incorporated ZnIn2S4 for boosting photocatalytic hydrogen evolution coupled with benzyl alcohol oxidation. Chem. Eng. J. 2025, 506, 159957.

56. Zhao, S.; Xu, J.; Mao, M.; Li, L.; Li, X. Protonated g-C3N4 cooperated with Co-MOF doped with Sm to construct 2D/2D heterojunction for integrated dye-sensitized photocatalytic H2 evolution. J. Colloid. Interface. Sci. 2021, 583, 435-47.

57. Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Construction of 1D/2D W18O49/porous g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2 evolution. Acta. Phys. Chim. Sin. 2021, 0, 2108028-0.

58. Feng, X.; Shang, H.; Zhou, J.; et al. Heterostructured core-shell CoS1.097@ZnIn2S4 nanosheets for enhanced photocatalytic hydrogen evolution under visible light. Chem. Eng. J. 2023, 457, 141192.

59. Sun, L.; Wang, W.; Lu, P.; Liu, Q.; Wang, L.; Tang, H. Enhanced photocatalytic hydrogen production and simultaneous benzyl alcohol oxidation by modulating the Schottky barrier with nano high-entropy alloys. Chin. J. Catal. 2023, 51, 90-100.

60. Edalati, P.; Shen, X.; Watanabe, M.; et al. High-entropy oxynitride as a low-bandgap and stable photocatalyst for hydrogen production. J. Mater. Chem. A. 2021, 9, 15076-86.

61. Zhao, X.; Zhang, X.; Lei, M.; Ma, X.; Li, Y.; Jin, Z. Synergistic effect of morphology regulation of LaNiO3 S-scheme heterojunction for enhanced photocatalytic hydrogen production. J. Mater. Sci. Technol. 2026, 245, 238-48.

62. Liu, Z.; Zhuang, Y.; Dong, L.; et al. Enhancement mechanism of photocatalytic hydrogen production activity of CeO2/CdS by morphology regulation. ACS. Appl. Energy. Mater. 2023, 6, 7722-36.

63. Hidalgo-jiménez, J.; Akbay, T.; Ishihara, T.; Edalati, K. Understanding high photocatalytic activity of the TiO2 high-pressure columbite phase by experiments and first-principles calculations. J. Mater. Chem. A. 2023, 11, 23523-35.

64. Shundo, Y.; Tam Nguyen, T.; Akrami, S.; et al. Oxygen vacancy-rich high-pressure rocksalt phase of zinc oxide for enhanced photocatalytic hydrogen evolution. J. Colloid. Interface. Sci. 2024, 666, 22-34.

65. Wang, Q.; Hisatomi, T.; Jia, Q.; et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 2016, 15, 611-5.

66. Wu, B.; Liu, W.; Chen, T.; Perng, T.; Huang, J.; Chen, L. Plasmon-enhanced photocatalytic hydrogen production on Au/TiO2 hybrid nanocrystal arrays. Nano. Energy. 2016, 27, 412-9.

67. Cheng, C.; Zhang, J.; Zeng, R.; Xing, F.; Huang, C. Schottky barrier tuning via surface plasmon and vacancies for enhanced photocatalytic H2 evolution in seawater. Appl. Catal. B. Environ. 2022, 310, 121321.

68. Wang, L.; Wang, L.; Zhao, K.; et al. Hydrogen production performance of active Ce/N co-doped SrTiO3 for photocatalytic water splitting. Int. J. Hydrogen. Energy. 2022, 47, 39047-57.

69. Shen, Z.; Wei, X.; Wang, M.; et al. Multi-defect Pd-based catalyst doped with rare earth element La for ethanol-assisted energy-saving hydrogen production. J. Colloid. Interface. Sci. 2025, 697, 137969.

70. Tang, W.; Luo, L.; Chen, Y.; et al. Noble-metal-free Bi-OZIS nanohybrids for sacrificial-agent-free photocatalytic water splitting: With long-lived photogenerated electrons. Sep. Purif. Technol. 2025, 357, 130047.

71. Chen, Y.; Ji, S.; Sun, W.; et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem. Int. Ed. 2020, 59, 1295-301.

72. Hu, S.; Gao, M. L.; Huang, J.; et al. Introducing hydrogen-bonding microenvironment in close proximity to single-atom sites for boosting photocatalytic hydrogen production. J. Am. Chem. Soc. 2024, 146, 20391-400.

73. Wang, H.; Zhang, X.; Zhang, W.; Zhou, M.; Jiang, H. L. Heteroatom-doped Ag25 nanoclusters encapsulated in metal-organic frameworks for photocatalytic hydrogen production. Angew. Chem. Int. Ed. 2024, 63, e202401443.

74. Yu, Z.; Li, Y.; Torres-pinto, A.; et al. Single-atom Ir and Ru anchored on graphitic carbon nitride for efficient and stable electrocatalytic/photocatalytic hydrogen evolution. Appl. Catal. B. Environ. 2022, 310, 121318.

75. Wu, C.; Huang, W.; Liu, H.; Lv, K.; Li, Q. Insight into synergistic effect of Ti3C2 MXene and MoS2 on anti-photocorrosion and photocatalytic of CdS for hydrogen production. Appl. Catal. B. Environ. 2023, 330, 122653.

76. Tan, M.; Ma, Y.; Yu, C.; et al. Boosting photocatalytic hydrogen production via interfacial engineering on 2D ultrathin Z-scheme ZnIn2S4/g-C3N4 heterojunction. Adv. Funct. Materials. 2022, 32, 2111740.

77. Wang, J.; Niu, X.; Hao, Q.; et al. Promoting charge separation in CuInS2/CeO2 photocatalysts by an S-scheme heterojunction for enhanced photocatalytic H2 production. Chem. Eng. J. 2024, 493, 152534.

78. Yang, J.; Jing, J.; Li, W.; Zhu, Y. Electron donor-acceptor interface of TPPS/PDI boosting charge transfer for efficient photocatalytic hydrogen evolution. Adv. Sci. 2022, 9, e2201134.

79. Guan, G.; Ye, E.; You, M.; Li, Z. Hybridized 2D nanomaterials toward highly efficient photocatalysis for degrading pollutants: current status and future perspectives. Small 2020, 16, e1907087.

80. Guan, G.; Han, M. Y. Functionalized hybridization of 2D nanomaterials. Adv. Sci. 2019, 6, 1901837.

81. Zhang, Y.; Zhou, K.; Yuan, C.; et al. In-situ formation of SrTiO3/Ti3C2 MXene Schottky heterojunction for efficient photocatalytic hydrogen evolution. J. Colloid. Interface. Sci. 2024, 653, 482-92.

82. Gu, H.; Zhang, H.; Wang, X.; et al. Robust construction of CdSe nanorods@Ti3C2 MXene nanosheet for superior photocatalytic H2 evolution. Appl. Catal. B. Environ. 2023, 328, 122537.

83. Li, H.; Sun, B.; Gao, T.; Li, H.; Ren, Y.; Zhou, G. Ti3C2 MXene co-catalyst assembled with mesoporous TiO2 for boosting photocatalytic activity of methyl orange degradation and hydrogen production. Chin. J. Catal. 2022, 43, 461-71.

84. Xu, H.; Xiao, R.; Huang, J.; Jiang, Y.; Zhao, C.; Yang, X. In situ construction of protonated g-C3N4/Ti3C2 MXene Schottky heterojunctions for efficient photocatalytic hydrogen production. Chin. J. Catal. 2021, 42, 107-14.

85. Hu, T.; Dai, K.; Zhang, J.; Chen, S. Noble-metal-free Ni2P modified step-scheme SnNb2O6/CdS-diethylenetriamine for photocatalytic hydrogen production under broadband light irradiation. Appl. Catal. B. Environ. 2020, 269, 118844.

86. Wei, Y.; Wu, Y.; Wang, J.; et al. Rationally designed dual cocatalysts on ZnIn2S4 nanoflowers for photoredox coupling of benzyl alcohol oxidation with H2 evolution. J. Mater. Chem. A. 2024, 12, 18986-92.

87. Xu, M.; Li, D.; Sun, K.; et al. Interfacial microenvironment modulation boosting electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis. Angew. Chem. Int. Ed. Engl. 2021, 60, 16372-6.

88. Li, Z.; Deng, T.; Ma, S.; et al. Three-component donor-π-acceptor covalent-organic frameworks for boosting photocatalytic hydrogen evolution. J. Am. Chem. Soc. , 2023, 8364-74.

89. Han, C.; Xiang, S.; Jin, S.; Zhang, C.; Jiang, J. Rational design of conjugated microporous polymer photocatalysts with definite D-π-A structures for ultrahigh photocatalytic hydrogen evolution activity under natural sunlight. ACS. Catal. 2023, 13, 204-12.

90. Li, Y.; Yang, L.; He, H.; et al. In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production. Nat. Commun. 2022, 13, 1355.

91. Hsu, W. L.; Tsai, C. W.; Yeh, A. C.; Yeh, J. W. Clarifying the four core effects of high-entropy materials. Nat. Rev. Chem. 2024, 8, 471-85.

92. Edalati, P.; Wang, Q.; Razavi-khosroshahi, H.; Fuji, M.; Ishihara, T.; Edalati, K. Photocatalytic hydrogen evolution on a high-entropy oxide. J. Mater. Chem. A. 2020, 8, 3814-21.

93. Hai, H. T. N.; Nguyen, T. T.; Nishibori, M.; Ishihara, T.; Edalati, K. Photoreforming of plastic waste into valuable products and hydrogen using a high-entropy oxynitride with distorted atomic-scale structure. Appl. Catal. B. Environ. Energy. 2025, 365, 124968.

94. Chen, Z. W.; Chen, L.; Gariepy, Z.; Yao, X.; Singh, C. V. High-throughput and machine-learning accelerated design of high entropy alloy catalysts. Trends. Chem. 2022, 4, 577-9.

95. Chang, Y.; Benlolo, I.; Bai, Y.; et al. High-entropy alloy electrocatalysts screened using machine learning informed by quantum-inspired similarity analysis. Matter 2024, 7, 4099-113.

96. Zhang, L.; Bing, Q.; Qin, H.; Yu, L.; Li, H.; Deng, D. Artificial intelligence for catalyst design and synthesis. Matter 2025, 8, 102138.

97. Hisatomi, T.; Yamada, T.; Nishiyama, H.; Takata, T.; Domen, K. Materials and systems for large-scale photocatalytic water splitting. Nat. Rev. Mater. 2025, 10, 769-82.

98. Holmes-gentle, I.; Tembhurne, S.; Suter, C.; Haussener, S. Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device. Nat. Energy. 2023, 8, 586-96.

99. Sun, H.; Shi, Y.; Shi, W.; Guo, F. High-crystalline/amorphous g-C3N4 S-scheme homojunction for boosted photocatalytic H2 production in water/simulated seawater: interfacial charge transfer and mechanism insight. Appl. Surf. Sci. 2022, 593, 153281.

100. Wang, C.; Lu, Y.; Wang, Z.; et al. Salt-assisted construction of hydrophilic carbon nitride photocatalysts with abundant water molecular adsorption sites for efficient hydrogen production. Appl. Catal. B. Environ. Energy. 2024, 350, 123902.

101. Zhao, W.; Luo, L.; Cong, M.; et al. Nanoscale covalent organic frameworks for enhanced photocatalytic hydrogen production. Nat. Commun. 2024, 15, 6482.

102. Yuan, Y.; Zhou, L.; Robatjazi, H.; et al. Earth-abundant photocatalyst for H2 generation from NH3 with light-emitting diode illumination. Science 2022, 378, 889-93.

103. Wei, Q.; Yang, Y.; Hou, J.; Liu, H.; Cao, F.; Zhao, L. Direct solar photocatalytic hydrogen generation with CPC photoreactors: system development. Solar. Energy. 2017, 153, 215-23.

104. Nishiyama, H.; Yamada, T.; Nakabayashi, M.; et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 2021, 598, 304-7.

105. Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy. Environ. Sci. 2013, 6, 1983-2002.

106. Guo, S.; Li, X.; Li, J.; Wei, B. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nat. Commun. 2021, 12, 1343.

107. Zhao, Y.; Ding, C.; Zhu, J.; et al. A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts. Angew. Chem. Int. Ed. 2020, 59, 9653-8.

108. Zhou, P.; Navid, I. A.; Ma, Y.; et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023, 613, 66-70.

109. Ran, J.; Gao, G.; Li, F. T.; Ma, T. Y.; Du, A.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.

110. Hai, H. T. N.; Hidalgo-jiménez, J.; Edalati, K. Boosting hydrogen and methane formation on a high-entropy photocatalyst by integrating atomic d0/d10 electronic junctions and microscopic P/N heterojunctions. Int. J. Hydrogen. Energy. 2025, 162, 150762.

111. Wang, J.; Niu, X.; Wang, R.; et al. High-entropy alloy-enhanced ZnCdS nanostructure photocatalysts for hydrogen production. Appl. Catal. B. Environ. Energy. 2025, 362, 124763.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/