REFERENCES
1. Squadrito, G.; Maggio, G.; Nicita, A. The green hydrogen revolution. Renew. Energy. 2023, 216, 119041.
2. Habib, M. A.; Abdulrahman, G. A.; Alquaity, A. B.; Qasem, N. A. Hydrogen combustion, production, and applications: a review. Alex. Eng. J. 2024, 100, 182-207.
3. Ilisca, E. Microporous materials for hydrogen liquefiers and storage vessels. J. Mater. Sci. Manuf. Res. 2022, 3, 1-10.
4. Ball, M.; Wietschel, M. The hydrogen economy: opportunities and challenges. Cambridge University Press; 2009.
5. Barbieri, C.; Ceglie, V.; Stefanizzi, M.; Torresi, M. Solid-state Hydrogen storage: influence of storage capacity in physisorption. J. Phys. Conf. Ser. 2024, 2893, 012057.
6. Rouquerol, F.; Rouquerol, J.; Sing, K. S. Thermodynamics of adsorption at the gas/solid interface. Adsorption by Powders and Porous Solids. Elsevier; 2014. pp. 25-56.
7. Sdanghi, G.; Schaefer, S.; Maranzana, G.; Celzard, A.; Fierro, V. Application of the modified Dubinin-Astakhov equation for a better understanding of high-pressure hydrogen adsorption on activated carbons. Int. J. Hydrogen. Energy. 2020, 45, 25912-26.
8. Ramirez-Vidal, P.; Sdanghi, G.; Celzard, A.; Fierro, V. High hydrogen release by cryo-adsorption and compression on porous materials. Int. J. Hydrogen. Energy. 2022, 47, 8892-915.
9. Ramirez-Vidal, P.; Canevesi, R. L. S.; Sdanghi, G.; et al. A step forward in understanding the hydrogen adsorption and compression on activated carbons. ACS. Appl. Mater. Interfaces. 2021, 13, 12562-74.
10. Weitkamp, J. Zeolites as media for hydrogen storage*1. Int. J. Hydrogen. Energy. 1995, 20, 967-70.
11. Prasanth, K. Adsorption of hydrogen in nickel and rhodium exchanged zeolite X. Int. J. Hydrogen. Energy. 2008, 33, 735-45.
12. Hirscher, M.; Becher, M.; Haluska, M.; et al. Hydrogen storage in carbon nanostructures. J. Alloys. Compd. 2002, 330-2, 654-8.
13. Popov, V. Carbon nanotubes: properties and application. Mater. Sci. Eng. R. Rep. 2004, 43, 61-102.
14. Langmi, H. W.; Ren, J.; North, B.; Mathe, M.; Bessarabov, D. Hydrogen storage in metal-organic frameworks: a review. Electrochim. Acta. 2014, 128, 368-92.
15. Liu, X.; Sun, T.; Hu, J.; Wang, S. Composites of metal-organic frameworks and carbon-based materials: preparations, functionalities and applications. J. Mater. Chem. A. 2016, 4, 3584-616.
16. Paz, F. A.; Klinowski, J.; Vilela, S. M.; Tomé, J. P.; Cavaleiro, J. A.; Rocha, J. Ligand design for functional metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 1088-110.
17. Achenbach, B.; Yurdusen, A.; Stock, N.; Maurin, G.; Serre, C. Synthetic aspects and characterization needs in MOF chemistry - from discovery to applications. Adv. Mater. 2025, e2411359.
18. Chakraborty, D.; Yurdusen, A.; Mouchaham, G.; Nouar, F.; Serre, C. Large-scale production of metal organic frameworks. Adv. Funct. Mater. 2024, 34, 2309089.
19. Rojas-Garcia, E.; Castañeda-Ramírez, A.; Angeles-Beltrán, D.; López-Medina, R.; Maubert-Franco, A. Enhancing in the hydrogen storage by SWCNT/HKUST-1 composites: effect of SWCNT amount. Catal. Today. 2022, 394-6, 357-64.
20. Liu, S.; Sun, L.; Xu, F.; et al. Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity. Energy. Environ. Sci. 2013, 6, 818.
21. Zorainy, M. Y. M. MIL metal-organic frameworks: synthesis, post-synthetic modifications, and applications; 2022. Available from: https://publications.polymtl.ca/10306/ [Last accessed on 15 Sep 2025].
22. Vallés-García, C.; Gkaniatsou, E.; Santiago-Portillo, A.; et al. Design of stable mixed-metal MIL-101(Cr/Fe) materials with enhanced catalytic activity for the Prins reaction. J. Mater. Chem. A. 2020, 8, 17002-11.
23. Niknam, E.; Panahi, F.; Daneshgar, F.; Bahrami, F.; Khalafi-Nezhad, A. Metal-organic framework MIL-101(Cr) as an efficient heterogeneous catalyst for clean synthesis of benzoazoles. ACS. Omega. 2018, 3, 17135-44.
24. Zorainy, M. Y.; Gar, Alalm. M.; Kaliaguine, S.; Boffito, D. C. Revisiting the MIL-101 metal-organic framework: design, synthesis, modifications, advances, and recent applications. J. Mater. Chem. A. 2021, 9, 22159-217.
25. Denysenko, D.; Grzywa, M.; Tonigold, M.; et al. Elucidating gating effects for hydrogen sorption in MFU-4-type triazolate-based metal-organic frameworks featuring different pore sizes. Chemistry 2011, 17, 1837-48.
26. Bromberg, L.; Diao, Y.; Wu, H.; Speakman, S. A.; Hatton, T. A. Chromium(III) terephthalate metal organic framework (MIL-101): HF-free synthesis, structure, polyoxometalate composites, and catalytic properties. Chem. Mater. 2012, 24, 1664-75.
27. Sutton, A. L.; Mardel, J. I.; Hill, M. R. Metal-organic frameworks (MOFs) as hydrogen storage materials at near-ambient temperature. Chemistry 2024, 30, e202400717.
28. Shi, W.; Jin, X.; Zhang, C.; et al. Recent advancement in metal-organic frameworks for hydrogen storage: mechanisms, influencing factors and enhancement strategies. Int. J. Hydrogen. Energy. 2024, 83, 432-49.
29. Bimbo, N.; Zhang, K.; Aggarwal, H.; et al. Hydrogen adsorption in metal-organic framework MIL-101(Cr)-adsorbate densities and enthalpies from sorption, neutron scattering, in situ X-ray diffraction, calorimetry, and molecular simulations. ACS. Appl. Energy. Mater. 2021, 4, 7839-47.
30. Taheri, A.; Babakhani, E. G.; Towfighi, Darian. J. A MIL-101(Cr) and graphene oxide composite for methane-rich stream treatment. Energy. Fuels. 2017, 31, 8792-802.
31. Jia, X.; Zhao, P.; Ye, X.; et al. A novel metal-organic framework composite MIL-101(Cr)@GO as an efficient sorbent in dispersive micro-solid phase extraction coupling with UHPLC-MS/MS for the determination of sulfonamides in milk samples. Talanta 2017, 169, 227-38.
32. Xia, X.; Li, S. Improved adsorption cooling performance of MIL-101(Cr)/GO composites by tuning the water adsorption rate. Sustain. Energy. Fuels. 2023, 7, 437-47.
33. Jia, X.; Li, S.; Wang, Y.; Wang, T.; Hou, X. Adsorption behavior and mechanism of sulfonamide antibiotics in aqueous solution on a novel MIL-101(Cr)@GO composite. J. Chem. Eng. Data. 2019, 64, 1265-74.
34. Elsayed, E.; Wang, H.; Anderson, P. A.; et al. Development of MIL-101(Cr)/GrO composites for adsorption heat pump applications. Micropor. Mesopor. Mater. 2017, 244, 180-91.
35. Yan, J.; Yu, Y.; Ma, C.; et al. Adsorption isotherms and kinetics of water vapor on novel adsorbents MIL-101(Cr)@GO with super-high capacity. Appl. Therm. Eng. 2015, 84, 118-25.
36. Panchariya, D. K.; Rai, R. K.; Anil, Kumar. E.; Singh, S. K. Core-shell zeolitic imidazolate frameworks for enhanced hydrogen storage. ACS. Omega. 2018, 3, 167-75.
37. Dutta, A.; Pan, Y.; Liu, J.; Kumar, A. Multicomponent isoreticular metal-organic frameworks: Principles, current status and challenges. Coordin. Chem. Rev. 2021, 445, 214074.
38. Muschi, M.; Devautour-Vinot, S.; Aureau, D.; et al. Metal-organic framework/graphene oxide composites for CO2 capture by microwave swing adsorption. J. Mater. Chem. A. 2021, 9, 13135-42.
39. Petit, C.; Bandosz, T. J. Engineering the surface of a new class of adsorbents: metal-organic framework/graphite oxide composites. J. Colloid. Interface. Sci. 2015, 447, 139-51.
40. Qiu, X.; Wang, X.; Li, Y. Controlled growth of dense and ordered metal-organic framework nanoparticles on graphene oxide. Chem. Commun. 2015, 51, 3874-7.
41. Sun, X.; Xia, Q.; Zhao, Z.; Li, Y.; Li, Z. Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane. Chem. Eng. J. 2014, 239, 226-32.
42. Sun, X.; Li, Y.; Xi, H.; Xia, Q. Adsorption performance of a MIL-101(Cr)/graphite oxide composite for a series of n-alkanes. RSC. Adv. 2014, 4, 56216-23.
43. Zhou, X.; Huang, W.; Miao, J.; et al. Enhanced separation performance of a novel composite material GrO@MIL-101 for CO2/CH4 binary mixture. Chem. Eng. J. 2015, 266, 339-44.
44. Zhang, J.; Liu, X.; Zhou, H.; Yan, X.; Liu, Y.; Yuan, A. Pt-doped graphene oxide/MIL-101 nanocomposites exhibiting enhanced hydrogen uptake at ambient temperature. RSC. Adv. 2014, 4, 28908-13.
45. Lee, S. Y.; Park, S. J. Hydrogen storage behaviors of Ni-doped graphene oxide/MIL-101 hybrid composites. J. Nanosci. Nanotechnol. 2013, 13, 443-7.
46. Gkaniatsou, E.; Sicard, C.; Ricoux, R.; et al. Enzyme encapsulation in mesoporous metal-organic frameworks for selective biodegradation of harmful dye molecules. Angew. Chem. Int. Ed. 2018, 57, 16141-6.
47. Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge structural database. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171-9.
48. Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is the bet equation applicable to microporous adsorbents? Stud. Surf. Sci. Catal. 2007, 160, 49-56.
49. Leachman, J. W.; Jacobsen, R. T.; Penoncello, S. G.; Lemmon, E. W. Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. J. Phys. Chem. Ref. Data. 2009, 38, 721-48.
50. Morales-Ospino, R.; Jiménez-López, L.; Celzard, A.; Fierro, V. Fuels - hydrogen - hydrogen storage | physical adsorption. Encyclopedia of Electrochemical Power Sources. Elsevier; 2025. pp. 319-29.
51. Chen, Z.; Li, P.; Anderson, R.; et al. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 2020, 368, 297-303.
52. García-holley, P.; Schweitzer, B.; Islamoglu, T.; et al. Benchmark study of hydrogen storage in metal-organic frameworks under temperature and pressure swing conditions. ACS. Energy. Lett. 2018, 3, 748-54.
53. Schlichtenmayer, M.; Hirscher, M. The usable capacity of porous materials for hydrogen storage. Appl. Phys. A. 2016, 122, 9864.
54. DOE materials-based hydrogen storage summit: defining pathways for onboard automotive applications. Available from: https://www.energy.gov/eere/fuelcells/articles/doe-materials-based-hydrogen-storage-summit-defining-pathways-onboard [Last accessed on 15 Sep 2025].
55. Allendorf, M. D.; Hulvey, Z.; Gennett, T.; et al. An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage. Energy. Environ. Sci. 2018, 11, 2784-812.
56. Zorainy, M. Y.; Titi, H. M.; Kaliaguine, S.; Boffito, D. C. Multivariate metal-organic framework MTV-MIL-101 via post-synthetic cation exchange: is it truly achievable? Dalton. Trans. 2022, 51, 3280-94.
57. Tan, S. C.; Lee, H. K. A hydrogel composite prepared from alginate, an amino-functionalized metal-organic framework of type MIL-101(Cr), and magnetite nanoparticles for magnetic solid-phase extraction and UHPLC-MS/MS analysis of polar chlorophenoxy acid herbicides. Mikrochim. Acta. 2019, 186, 545.
58. Liu, Q.; Ning, L.; Zheng, S.; Tao, M.; Shi, Y.; He, Y. Adsorption of carbon dioxide by MIL-101(Cr): regeneration conditions and influence of flue gas contaminants. Sci. Rep. 2013, 3, 2916.
59. Karikkethu Prabhakaran P, Deschamps J. Doping activated carbon incorporated composite MIL-101 using lithium: impact on hydrogen uptake. J. Mater. Chem. A. 2015, 3, 7014-21.
60. Mirsoleimani-azizi, S. M.; Setoodeh, P.; Samimi, F.; Shadmehr, J.; Hamedi, N.; Rahimpour, M. R. Diazinon removal from aqueous media by mesoporous MIL-101(Cr) in a continuous fixed-bed system. J. Environ. Chem. Eng. 2018, 6, 4653-64.
61. Tourani, S.; Behvandi, A. Synthesis of MIL-101(Cr)/sulfasalazine (Cr-TA@SSZ) hybrid and its use as a novel adsorbent for adsorptive removal of organic pollutants from wastewaters. J. Porous. Mater. 2022, 29, 1441-62.
62. Thommes, M.; Kaneko, K.; Neimark, A. V.; et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure. Appl. Chem. 2015, 87, 1051-69.
63. Cho, H. S.; Yang, J.; Gong, X.; et al. Isotherms of individual pores by gas adsorption crystallography. Nat. Chem. 2019, 11, 562-70.
64. Ding, M.; Jiang, H. Improving water stability of metal-organic frameworks by a general surface hydrophobic polymerization. CCS. Chem. 2021, 3, 2740-8.
65. Burtch, N. C.; Jasuja, H.; Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114, 10575-612.
66. Tóth, A.; László, K. Water adsorption by carbons. Hydrophobicity and Hydrophilicity. Novel Carbon Adsorbents. Elsevier; 2012. pp. 147-71.
67. Greathouse, J. A.; Allendorf, M. D. The interaction of water with MOF-5 simulated by molecular dynamics. J. Am. Chem. Soc. 2006, 128, 10678-9.
68. Terrones, G. G.; Huang, S. P.; Rivera, M. P.; Yue, S.; Hernandez, A.; Kulik, H. J. Metal-organic framework stability in water and harsh environments from data-driven models trained on the diverse WS24 data set. J. Am. Chem. Soc. 2024, 146, 20333-48.
69. Liu, X.; Wang, X.; Kapteijn, F. Water and metal-organic frameworks: from interaction toward utilization. Chem. Rev. 2020, 120, 8303-77.
70. Canivet, J.; Fateeva, A.; Guo, Y.; Coasne, B.; Farrusseng, D. Water adsorption in MOFs: fundamentals and applications. Chem. Soc. Rev. 2014, 43, 5594-617.
71. Zeng, Y.; Prasetyo, L.; Nguyen, V. T.; Horikawa, T.; Do, D.; Nicholson, D. Characterization of oxygen functional groups on carbon surfaces with water and methanol adsorption. Carbon 2015, 81, 447-57.
72. Nguyen, V. T.; Horikawa, T.; Do, D.; Nicholson, D. Water as a potential molecular probe for functional groups on carbon surfaces. Carbon 2014, 67, 72-8.
73. Zhao, H.; Li, Q.; Wang, Z.; Wu, T.; Zhang, M. Synthesis of MIL-101(Cr) and its water adsorption performance. Micropor. Mesopor. Mater. 2020, 297, 110044.
74. Liu, R.; Gong, T.; Zhang, K.; Lee, C. Graphene oxide papers with high water adsorption capacity for air dehumidification. Sci. Rep. 2017, 7, 9761.
75. Lian, B.; De, Luca. S.; You, Y.; et al. Extraordinary water adsorption characteristics of graphene oxide. Chem. Sci. 2018, 9, 5106-11.
76. Castro-gutiérrez, J.; Canevesi, R.; Emo, M.; Izquierdo, M.; Celzard, A.; Fierro, V. CO2 outperforms KOH as an activator for high-rate supercapacitors in aqueous electrolyte. Renew. Sustain. Energy. Rev. 2022, 167, 112716.
77. Liu, L.; Tan, S. J.; Horikawa, T.; Do, D. D.; Nicholson, D.; Liu, J. Water adsorption on carbon - A review. Adv. Colloid. Interface. Sci. 2017, 250, 64-78.
78. Schlemminger, C.; Næss, E.; Bünger, U. Adsorption hydrogen storage at cryogenic temperature - Material properties and hydrogen ortho-para conversion matters. Int. J. Hydrogen. Energy. 2015, 40, 6606-25.
79. Fang, M.; He, R.; Zhou, J.; Fei, H.; Yang, K. Thermal conductivity enhancement and shape stability of composite phase change materials using MIL-101(Cr)-NH2/expanded graphite/multi-walled carbon nanotubes. J. Energy. Storage. 2024, 86, 111244.
80. Zhou, J.; Fang, M.; Yang, K.; et al. MIL-101(Cr)-NH2/reduced graphene oxide composite carrier enhanced thermal conductivity and stability of shape-stabilized phase change materials for thermal energy management. J. Energy. Storage. 2022, 52, 104827.
81. Wang, J.; Huang, X.; Gao, H.; Li, A.; Wang, C. Construction of CNT@Cr-MIL-101-NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity. Chem. Eng. J. 2018, 350, 164-72.
82. Yu, Z.; Deschamps, J.; Hamon, L.; Karikkethu, Prabhakaran. P.; Pré, P. Hydrogen adsorption and kinetics in MIL-101(Cr) and hybrid activated carbon-MIL-101(Cr) materials. Int. J. Hydrogen. Energy. 2017, 42, 8021-31.
83. Somayajulu Rallapalli PB, Raj MC, Patil DV, Prasanth KP, Somani RS, Bajaj HC. Activated carbon @ MIL-101(Cr): a potential metal-organic framework composite material for hydrogen storage: A potential MOF composite material for hydrogen storage. Int. J. Energy. Res. 2013, 37, 746-53.
84. Prasanth, K.; Rallapalli, P.; Raj, M. C.; Bajaj, H.; Jasra, R. V. Enhanced hydrogen sorption in single walled carbon nanotube incorporated MIL-101 composite metal-organic framework. Int. J. Hydrogen. Energy. 2011, 36, 7594-601.
85. Bénard, P.; Chahine, R. Storage of hydrogen by physisorption on carbon and nanostructured materials. Scr. Mater. 2007, 56, 803-8.
86. Sdanghi, G.; Sdanghi, G.; Maranzana, G.; Celzard, A.; Fierro, V. Hydrogen adsorption on nanotextured carbon materials. In: Sankir M, Sankir ND, editors. Hydrogen Storage Technologies. Wiley; 2018. pp. 263-320.
87. Tyagi, C.; Kulriya, P.; Ojha, S.; Avasthi, D.; Tripathi, A. Investigation of graphene oxide-hydrogen interaction using in-situ X-ray diffraction studies. Int. J. Hydrogen. Energy. 2018, 43, 13339-47.






