REFERENCES
1. Li, Y.; Wang, X.; Dong, S.; Chen, X.; Cui, G. Recent advances in non-aqueous electrolyte for rechargeable Li-O2 batteries. Adv. Energy. Mater. 2016, 6, 1600751.
2. Yang, Y.; Zhao, L.; Zhang, Y.; et al. Challenges and prospects of low-temperature rechargeable batteries: electrolytes, interfaces, and electrodes. Adv. Sci. 2024, 11, 2410318.
3. Angell, C. A. Fast ion motion in glassy and amorphous materials. Solid. State. Ionics. 1983, 9-10, 3-16.
4. Ma, M.; Zhang, M.; Jiang, B.; Du, Y.; Hu, B.; Sun, C. A review of all-solid-state electrolytes for lithium batteries: high-voltage cathode materials, solid-state electrolytes and electrode-electrolyte interfaces. Mater. Chem. Front. 2023, 7, 1268-97.
5. Muldoon, J.; Bucur, C. B.; Boaretto, N.; Gregory, T.; di, Noto. V. Polymers: opening doors to future batteries. Polymer. Reviews. 2015, 55, 208-46.
6. Yi, J.; Guo, S.; He, P.; Zhou, H. Status and prospects of polymer electrolytes for solid-state Li-O2 (air) batteries. Energy. Environ. Sci. 2017, 10, 860-84.
7. Lee, M. J.; Han, J.; Lee, K.; et al. Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 2022, 601, 217-22.
8. Hu, P.; Chai, J.; Duan, Y.; Liu, Z.; Cui, G.; Chen, L. Progress in nitrile-based polymer electrolytes for high performance lithium batteries. J. Mater. Chem. A. 2016, 4, 10070-83.
9. Stacy, E. W.; Gainaru, C. P.; Gobet, M.; et al. Fundamental limitations of ionic conductivity in polymerized Ionic Liquids. Macromolecules 2018, 51, 8637-45.
10. Edman, L.; Doeff, M. M.; Ferry, A.; Kerr, J.; De, Jonghe. L. C. Transport properties of the solid polymer electrolyte system P(EO)n LiTFSI. J. Phys. Chem. B. 2000, 104, 3476-80.
11. Mecerreyes, D. Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Prog. Polym. Sci. 2011, 36, 1629-48.
12. Eftekhari, A.; Saito, T. Synthesis and properties of polymerized ionic liquids. Eur. Polym. J. 2017, 90, 245-72.
13. Zhu, J.; Zhang, Z.; Zhao, S.; Westover, A. S.; Belharouak, I.; Cao, P. Single-ion conducting polymer electrolytes for solid-state lithium-metal batteries: design, performance, and challenges. Adv. Energy. Mater. 2021, 11, 2003836.
14. Gainaru, C.; Stacy, E. W.; Bocharova, V.; et al. Mechanism of conductivity relaxation in liquid and polymeric electrolytes: direct link between conductivity and diffusivity. J. Phys. Chem. B. 2016, 120, 11074-83.
15. Fan, F.; Wang, W.; Holt, A. P.; et al. Effect of molecular weight on the ion transport mechanism in polymerized ionic liquids. Macromolecules 2016, 49, 4557-70.
16. Bae, J.; Oh, S.; Lee, B.; et al. High-performance, printable quasi-solid-state electrolytes toward all 3D direct ink writing of shape-versatile Li-ion batteries. Energy. Storage. Mater. 2023, 57, 277-88.
17. Ahmed, F.; Choi, I.; Rahman, M. M.; et al. Remarkable conductivity of a self-healing single-ion conducting polymer electrolyte, poly(ethylene-co-acrylic lithium (fluoro sulfonyl)imide), for all-solid-state Li-ion batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 34930-8.
18. Luo, Y.; Gao, L.; Kang, W. A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms. J. Energy. Chem. 2024, 89, 543-56.
19. Pożyczka, K.; Marzantowicz, M.; Dygas, J.; Krok, F. Ionic conductivity and lithium transference number of poly(ethylene oxide):LiTFSI system. Electrochim. Acta. 2017, 227, 127-35.
20. Song, J.; Wang, Y.; Wan, C. Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power. Sources. 1999, 77, 183-97.
21. Lehmann, M. L.; Yang, G.; Gilmer, D.; et al. Tailored crosslinking of Poly(ethylene oxide) enables mechanical robustness and improved sodium-ion conductivity. Energy. Storage. Mater. 2019, 21, 85-96.
22. Li, L.; Li, S.; Lu, Y. Suppression of dendritic lithium growth in lithium metal-based batteries. Chem. Commun. 2018, 54, 6648-61.
23. Lee, H. G.; Kim, S. Y.; Lee, J. S. Dynamic observation of dendrite growth on lithium metal anode during battery charging/discharging cycles. npj. Comput. Mater. 2022, 8, 103.
24. Maity, A.; Svirinovsky-Arbeli, A.; Buganim, Y.; Oppenheim, C.; Leskes, M. Tracking dendrites and solid electrolyte interphase formation with dynamic nuclear polarization-NMR spectroscopy. Nat. Commun. 2024, 15, 9956.
25. Bocharova, V.; Sokolov, A. P. Perspectives for polymer electrolytes: a view from fundamentals of ionic conductivity. Macromolecules 2020, 53, 4141-57.
26. Shan, C.; Wang, Y.; Liang, M.; et al. A comprehensive review of single ion-conducting polymer electrolytes as a key component of lithium metal batteries: From structural design to applications. Energy. Storage. Mater. 2023, 63, 102955.
27. Ghorbanzade, P.; Loaiza, L. C.; Johansson, P. Plasticized and salt-doped single-ion conducting polymer electrolytes for lithium batteries. RSC. Adv. 2022, 12, 18164-7.
28. Swift, M. W.; Jagad, H.; Park, J.; Qie, Y.; Wu, Y.; Qi, Y. Predicting low-impedance interfaces for solid-state batteries. Curr. Opin. Solid. State. Mater. Sci. 2022, 26, 100990.
29. Wang, H.; Yu, Z.; Kong, X.; et al. Liquid electrolyte: the nexus of practical lithium metal batteries. Joule 2022, 6, 588-616.
30. Guan, X.; Wu, Q.; Zhang, X.; Guo, X.; Li, C.; Xu, J. In-situ crosslinked single ion gel polymer electrolyte with superior performances for lithium metal batteries. Chem. Eng. J. 2020, 382, 122935.
31. He, P.; Chen, S.; Choi, Y. Y.; Myung, N. V.; Nykaza, J. R.; Schaefer, J. L. In-situ crosslinked gel polymer electrolytes based on ionic monomers as charge carriers for lithium-ion batteries. ECS. Adv. 2024, 3, 010504.
32. Shan, X.; Morey, M.; Li, Z.; et al. A polymer electrolyte with high cationic transport number for safe and stable solid Li-metal batteries. ACS. Energy. Lett. 2022, 7, 4342-51.
33. Xiao, G.; Xu, H.; Bai, C.; Liu, M.; He, Y. Progress and perspectives of in situ polymerization method for lithium-based batteries. Interdiscip. Mater. 2023, 2, 609-34.
34. Zhang, Q.; Liu, S.; Lin, Z.; et al. Highly safe and cyclable Li-metal batteries with vinylethylene carbonate electrolyte. Nano. Energy. 2020, 74, 104860.
35. Devaux, D.; Liénafa, L.; Beaudoin, E.; et al. Comparison of single-ion-conductor block-copolymer electrolytes with polystyrene-TFSI and polymethacrylate-TFSI structural blocks. Electrochim. Acta. 2018, 269, 250-61.
36. Au, H.; Crespo-ribadeneyra, M.; Titirici, M. Beyond Li-ion batteries: performance, materials diversification, and sustainability. One. Earth. 2022, 5, 207-11.
37. Gao, Y.; Pan, Z.; Sun, J.; Liu, Z.; Wang, J. High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro. Lett. 2022, 14, 94.
38. Tian, Y.; Zeng, G.; Rutt, A.; et al. Promises and challenges of next-generation “beyond li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 2021, 121, 1623-69.
39. Vedhanarayanan, B.; Seetha, Lakshmi. K. C. Beyond lithium-ion: emerging frontiers in next-generation battery technologies. Front. Batter. Electrochem. 2024, 3, 1377192.
40. Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 2019, 5, 2326-52.
41. Barbosa, J. C.; Gonçalves, R.; Costa, C. M.; Lanceros-Méndez, S. Toward sustainable solid polymer electrolytes for lithium-ion batteries. ACS. Omega. 2022, 7, 14457-64.
42. Mu, J.; Liao, S.; Shi, L.; et al. Solid-state polymer electrolytes in lithium batteries: latest progress and perspective. Polym. Chem. 2024, 15, 473-99.
43. Song, Z.; Chen, F.; Martinez-Ibañez, M.; et al. A reflection on polymer electrolytes for solid-state lithium metal batteries. Nat. Commun. 2023, 14, 4884.
44. Dyre, J. C.; Maass, P.; Roling, B.; Sidebottom, D. L. Fundamental questions relating to ion conduction in disordered solids. Rep. Prog. Phys. 2009, 72, 046501.
45. Ishai, P. B.; Talary, M. S.; Caduff, A.; Levy, E.; Feldman, Y. Electrode polarization in dielectric measurements: a review. Meas. Sci. Technol. 2013, 24, 102001.
46. Gainaru, C.; Kumar, R.; Popov, I.; et al. Mechanisms controlling the energy barrier for ion hopping in polymer electrolytes. Macromolecules 2023, 56, 6051-9.
47. Evans, J.; Vincent, C. A.; Bruce, P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28, 2324-8.
48. Fong, K. D.; Self, J.; Diederichsen, K. M.; Wood, B. M.; McCloskey, B. D.; Persson, K. A. Ion transport and the true transference number in nonaqueous polyelectrolyte solutions for lithium ion batteries. ACS. Cent. Sci. 2019, 5, 1250-60.
49. Maass, P.; Meyer, M.; Bunde, A. Nonstandard relaxation behavior in ionically conducting materials. Phys. Rev. B. 1995, 51, 8164.
51. Sangoro, J. R.; Kremer, F. Charge transport and glassy dynamics in ionic liquids. Acc. Chem. Res. 2012, 45, 525-32.
52. Vargas-barbosa, N. M.; Roling, B. Dynamic ion correlations in solid and liquid electrolytes: how do they affect charge and mass transport? ChemElectroChem 2020, 7, 367-85.
53. Pothmann, T.; Middendorf, M.; Gerken, C.; Nürnberg, P.; Schönhoff, M.; Roling, B. Overdetermination method for accurate dynamic ion correlations in highly concentrated electrolytes. Faraday. Discuss. 2024, 253, 100-17.
54. Ahmed, M. D.; Zhu, Z.; Khamzin, A.; Paddison, S. J.; Sokolov, A. P.; Popov, I. Effect of ion mass on dynamic correlations in ionic liquids. J. Phys. Chem. B. 2023, 127, 10411-21.
55. Lorenz, M.; Kilchert, F.; Nürnberg, P.; et al. Local volume conservation in concentrated electrolytes is governing charge transport in electric fields. J. Phys. Chem. Lett. 2022, 13, 8761-7.
57. Sheng, J.; Zhang, Q.; Sun, C.; et al. Crosslinked nanofiber-reinforced solid-state electrolytes with polysulfide fixation effect towards high safety flexible lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2203272.