REFERENCES
1. Gaucher, E. C. New perspectives in the industrial exploration for native hydrogen. Elements 2020, 16, 8-9.
2. Tong, S.; Miao, B.; Zhang, L.; Chan, S. H. Decarbonizing natural gas: a review of catalytic decomposition and carbon formation mechanisms. Energies 2022, 15, 2573.
3. Tong, S.; Miao, B.; Zhang, W.; Zhang, L.; Chan, S. H. Optimization of methane catalytic decomposition in a fluidized bed reactor: a computational approach. Energy. Conver. Manag. 2023, 297, 117719.
4. Ighalo, J. O.; Amama, P. B. Recent advances in the catalysis of steam reforming of methane (SRM). Int. J. Hydrogen. Energy. 2024, 51, 688-700.
5. Ambrosetti, M.; Bonincontro, D.; Balzarotti, R.; Beretta, A.; Groppi, G.; Tronconi, E. H2 production by methane steam reforming over Rh/Al2O3 catalyst packed in Cu foams: a strategy for the kinetic investigation in concentrated conditions. Catal. Today. 2022, 387, 107-18.
6. Nnabuife, S. G.; Ugbeh-johnson, J.; Okeke, N. E.; Ogbonnaya, C. Present and projected developments in hydrogen production: a technological review*. Carbon. Capture. Sci. Technol. 2022, 3, 100042.
7. Navas-Anguita, Z.; García-Gusano, D.; Dufour, J.; Iribarren, D. Revisiting the role of steam methane reforming with CO2 capture and storage for long-term hydrogen production. Sci. Total. Environ. 2021, 771, 145432.
8. Korányi, T. I.; Németh, M.; Beck, A.; Horváth, A. Recent advances in methane pyrolysis: turquoise hydrogen with solid carbon production. Energies 2022, 15, 6342.
9. Ingale, G. U.; Kwon, H.; Jeong, S.; et al. Assessment of greenhouse gas emissions from hydrogen production processes: turquoise hydrogen vs. steam methane reforming. Energies 2022, 15, 8679.
10. Chan, S. H.; Ding, O. L.; Hoang, D. L. A Thermodynamic view of partial oxidation, steam reforming, and autothermal reforming on methane. Int. J. Green. Energy. 2004, 1, 265-78.
11. Hoang, D.; Chan, S.; Ding, O. Kinetic and modelling study of methane steam reforming over sulfide nickel catalyst on a gamma alumina support. Chem. Eng. J. 2005, 112, 1-11.
12. Hoang, D.; Chan, S.; Ding, O. Hydrogen production for fuel cells by autothermal reforming of methane over sulfide nickel catalyst on a gamma alumina support. J. Power. Sources. 2006, 159, 1248-57.
13. Matin, N. S.; Flanagan, W. P. Environmental performance of nonthermal plasma dry and conventional steam reforming of methane for hydrogen production: application of life cycle assessment methodology. Int. J. Hydrogen. Energy. 2024, 49, 1405-13.
14. Ding, X.; Li, B.; Yang, Y.; Liu, X.; Guo, Y.; Wang, Y. Steam reforming of methane over nickel-aluminum spinel-derived catalyst. Int. J. Hydrogen. Energy. 2024, 51, 1256-66.
15. Do, T. N.; Kwon, H.; Park, M.; Kim, C.; Kim, Y. T.; Kim, J. Carbon-neutral hydrogen production from natural gas via electrified steam reforming: techno-economic-environmental perspective. Energy. Convers. Manag. 2023, 279, 116758.
16. Hamdan, M.; Halawy, L.; Abdel, K. A. N.; Ahmad, M. N.; Zeaiter, J. Analytical review of the catalytic cracking of methane. Fuel 2022, 324, 124455.
17. Qian, J. X.; Chen, T. W.; Enakonda, L. R.; et al. Methane decomposition to produce CO -free hydrogen and nano-carbon over metal catalysts: a review. Int. J. Hydrogen. Energy. 2020, 45, 7981-8001.
18. Qian, J.; Li, H.; Sun, D.; et al. Tuning Mg-Fe-O solid solutions towards optimized exsolution of active sites for thermal catalytic decomposition of methane. Chem. Eng. J. 2024, 497, 154595.
19. Abbas, H. F.; Wan, D. W. Hydrogen production by methane decomposition: a review. Int. J. Hydrogen. Energy. 2010, 35, 1160-90.
20. Hazra, M.; Croiset, E.; Hudgins, R. R.; Silveston, P. L.; Elkamel, A. Experimental investigation of the catalytic cracking of methane over a supported Ni catalyst. Can. J. Chem. Eng. 2009, 87, 99-105.
21. Mcconnachie, M.; Konarova, M.; Smart, S. Literature review of the catalytic pyrolysis of methane for hydrogen and carbon production. Int. J. Hydrogen. Energy. 2023, 48, 25660-82.
22. Abánades, A.; Rubbia, C.; Salmieri, D. Thermal cracking of methane into hydrogen for a CO2-free utilization of natural gas. Int. J. Hydrogen. Energy. 2013, 38, 8491-6.
23. Jin, L.; Si, H.; Zhang, J.; et al. Preparation of activated carbon supported Fe-Al2O3 catalyst and its application for hydrogen production by catalytic methane decomposition. Int. J. Hydrogen. Energy. 2013, 38, 10373-80.
24. Amin, A. M.; Croiset, E.; Epling, W. Review of methane catalytic cracking for hydrogen production. Int. J. Hydrogen. Energy. 2011, 36, 2904-35.
25. Ashik, U.; Wan, D. W.; Abbas, H. F. Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane - a review. Renew. Sustain. Energy. Rev. 2015, 44, 221-56.
26. Maneerung, T.; Hidajat, K.; Kawi, S. LaNiO3 perovskite catalyst precursor for rapid decomposition of methane: influence of temperature and presence of H2 in feed stream. Catalysis. Today. 2011, 171, 24-35.
27. Takenaka, S.; Shigeta, Y.; Tanabe, E.; Otsuka, K. Methane decomposition into hydrogen and carbon nanofibers over supported Pd-Ni catalysts. J. Catal. 2003, 220, 468-77.
28. Gallego G, Barrault J, Batiot-dupeyrat C, Mondragón F. Production of hydrogen and MWCNTs by methane decomposition over catalysts originated from LaNiO3 perovskite. Catal. Today. 2010, 149, 365-71.
29. Jiang, S.; Chen, X.; Chan, S.; Kwok, J.; Khor, K. (La0.75Sr0.25)(Cr0.5Mn0.5)O3/YSZ composite anodes for methane oxidation reaction in solid oxide fuel cells. Solid. State. Ionics. 2006, 177, 149-57.
30. Jiang, S. P.; Chen, X. J.; Chan, S. H.; Kwok, J. T. GDC-impregnated (La0.75Sr0.25)(Cr0.5Mn0.5)O3 anodes for direct utilization of methane in solid oxide fuel cells. J. Electrochem. Soc. 2006, 153, A850.
31. Sfeir, J.; Buffat, P. A.; Möckli, P.; et al. Lanthanum chromite based catalysts for oxidation of methane directly on SOFC anodes. J. Catal. 2001, 202, 229-44.
32. Chen, X.; Liu, Q.; Khor, K.; Chan, S. High-performance (La,Sr)(Cr,Mn)O3/(Gd,Ce)O2-δ composite anode for direct oxidation of methane. J. Power. Sources. 2007, 165, 34-40.
33. Jiang, S. P.; Zhang, L.; Zhang, Y. Lanthanum strontium manganese chromite cathode and anode synthesized by gel-casting for solid oxide fuel cells. J. Mater. Chem. 2007, 17, 2627.
34. Li, H.; Sun, G.; Xie, K.; et al. Chromate cathode decorated with in-situ growth of copper nanocatalyst for high temperature carbon dioxide electrolysis. Int. J. Hydrogen. Energy. 2014, 39, 20888-97.
35. Sun, H.; He, X.; Huang, X.; Gan, L. Modification of LSCM structure by anchoring alloy nanoparticles for efficient CO2 electrolysis. Energy. Fuels. 2024, 38, 3436-44.
36. Jardiel, T.; Caldes, M.; Moser, F.; Hamon, J.; Gauthier, G.; Joubert, O. New SOFC electrode materials: the Ni-substituted LSCM-based compounds (La0.75Sr0.25)(Cr0.5Mn0.5-xNix)O3-δ and (La0.75Sr0.25)(Cr0.5-xNixMn0.5)O3-δ. Solid. State. Ionics. 2010, 181, 894-901.
37. Carrillo, A. J.; López-García, A.; Delgado-Galicia, B.; Serra, J. M. New trends in nanoparticle exsolution. Chem. Commun. 2024, 60, 7987-8007.
38. Zhang, L.; Ping, J. S.; Siang, C. C.; Zhang, Y. Synthesis and performance of (La0.75Sr0.25)1-x(Cr0.5Mn0.5)O3 cathode powders of solid oxide fuel cells by gel-casting technique. J. Electrochem. Soc. 2007, 154, B577.
39. Zhang, L.; Chen, X.; Jiang, S. P.; He, H. Q.; Xiang, Y. Characterization of doped La0.7A0.3Cr0.5Mn0.5O3-δ (A=Ca, Sr, Ba) electrodes for solid oxide fuel cells. Solid. State. Ionics. 2009, 180, 1076-82.
40. Jiang, S. P.; Zhang, L.; He, H. Q.; Yap, R. K.; Xiang, Y. Synthesis and characterization of lanthanum silicate apatite by gel-casting route as electrolytes for solid oxide fuel cells. J. Power. Sources. 2009, 189, 972-81.
41. Maneerung, T.; Hidajat, K.; Kawi, S. Co-production of hydrogen and carbon nanofibers from catalytic decomposition of methane over LaNi(1-x)Mx O3-α perovskite (where M=Co, Fe and X=0, 0.2, 0.5, 0.8, 1). Int. J. Hydrogen. Energy. 2015, 40, 13399-411.
42. Duma, Z. G.; Swartbooi, A.; Musyoka, N. M. Thermocatalytic decomposition of methane to low-carbon hydrogen using LaNi1-xCuxO3 perovskite catalysts. Appl. Catal. A:. Gen. 2024, 677, 119703.