1. Luderer, G.; Madeddu, S.; Merfort, L.; et al. Impact of declining renewable energy costs on electrification in low-emission scenarios. Nat. Energy. 2022, 7, 32-42.
2. Davis, S. J.; Lewis, N. S.; Shaner, M.; et al. Net-zero emissions energy systems. Science 2018, 360, eaas9793.
3. Luderer, G.; Vrontisi, Z.; Bertram, C.; et al. Residual fossil CO2 emissions in 1.5-2 °C pathways. Nat. Clim. Chang. 2018, 8, 626-33.
4. Wang, X. Piezoelectric nanogenerators - harvesting ambient mechanical energy at the nanometer scale. Nano. Energy. 2012, 1, 13-24.
5. Donelan, J. M.; Li, Q.; Naing, V.; Hoffer, J. A.; Weber, D. J.; Kuo, A. D. Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 2008, 319, 807-10.
6. Yamada, T.; Niizeki, N.; Toyoda, H. Piezoelectric and elastic properties of lithium niobate single crystals. Jpn. J. Appl. Phys. 1967, 6, 151.
7. Acosta, M.; Novak, N.; Rojas, V.; et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 2017, 4, 041305.
8. Jaffe, H. Piezoelectric ceramics. J. Ame. Ceram. Soc. 1958, 41, 494-8.
9. Yang, Z.; Zhou, S.; Zu, J.; Inman, D. High-performance piezoelectric energy harvesters and their applications. Joule 2018, 2, 642-97.
10. Panda, P. K. Review: environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 2009, 44, 5049-62.
11. Sezer, N.; Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano. Energy. 2021, 80, 105567.
12. Wang, P.; Hu, M.; Wang, H.; et al. The evolution of flexible electronics: from nature, beyond nature, and to nature. Adv. Sci. 2020, 7, 2001116.
13. Mredha, M. T. I.; Jeon, I. Biomimetic anisotropic hydrogels: advanced fabrication strategies, extraordinary functionalities, and broad applications. Prog. Mater. Sci. 2022, 124, 100870.
14. Mredha, M. T. I.; Lee, Y.; Rama, V. A. V.; Gupta, T.; Manimel, W. R. R.; Jeon, I. Tardigrade-inspired extremotolerant glycerogels. NPG. Asia. Mater. 2023, 15, 472.
15. Hao, X. P.; Xu, Z.; Li, C. Y.; Hong, W.; Zheng, Q.; Wu, Z. L. Kirigami-design-enabled hydrogel multimorphs with application as a multistate switch. Adv. Mater. 2020, 32, e2000781.
16. Mredha, M. T. I.; Pathak, S. K.; Tran, V. T.; Cui, J.; Jeon, I. Hydrogels with superior mechanical properties from the synergistic effect in hydrophobic-hydrophilic copolymers. Chem. Eng. J. 2019, 362, 325-38.
17. Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143-53.
18. Tran, V. T.; Mredha, M. T. I.; Lee, Y.; et al. Electrically, thermally, and mechanically anisotropic gels with a wide operational temperature range. Adv. Funct. Mater. 2022, 32, 2110177.
19. Jeon, I.; Cui, J.; Illeperuma, W. R.; Aizenberg, J.; Vlassak, J. J. Extremely stretchable and fast self-healing hydrogels. Adv. Mater. 2016, 28, 4678-83.
20. Mallick Z, Sarkar U, Mandal D, Roy RK. Synergetic H-bonding and C-T interaction-mediated self-assembled structure results in a room-temperature ferroelectric material exhibiting electric field-induced dipole switching and piezo- and pyroelectric energy conversion. Chem. Mater. 2023, 35, 3316-28.
21. Zhao, W.; Shi, Z.; Hu, S.; Yang, G.; Tian, H. Understanding piezoelectric characteristics of PHEMA-based hydrogel nanocomposites as soft self-powered electronics. Adv. Compos. Hybrid. Mater. 2018, 1, 320-31.
22. Fu, R.; Tu, L.; Zhou, Y.; et al. A tough and self-powered hydrogel for artificial skin. Chem. Mater. 2019, 31, 9850-60.
23. Hu, Z.; Li, J.; Wei, X.; et al. Enhancing strain-sensing properties of the conductive hydrogel by introducing PVDF-TrFE. ACS. Appl. Mater. Interfaces. 2022, 14, 45853-68.
24. Rani, G. M.; Wu, C.; Motora, K. G.; Umapathi, R.; Jose, C. R. M. Acoustic-electric conversion and triboelectric properties of nature-driven CF-CNT based triboelectric nanogenerator for mechanical and sound energy harvesting. Nano. Energy. 2023, 108, 108211.
25. Rani, G. M.; Wu, C.; Motora, K. G.; Umapathi, R. Waste-to-energy: utilization of recycled waste materials to fabricate triboelectric nanogenerator for mechanical energy harvesting. J. Clean. Prod. 2022, 363, 132532.
26. Rani, G. M.; Ghoreishian, S. M.; Umapathi, R.; Vivekananthan, V.; Huh, Y. S. A biocompatible triboelectric nanogenerator-based edible electronic skin for morse code transmitters and smart healthcare applications. Nano. Energy. 2024, 128, 109899.
27. Yu, S.; Xu, Y.; Cao, Z.; et al. Alterable robotic skin using material gene expression modulation. Adv. Funct. Mater. 2024, 2416984.
28. Mogli, G.; Chiappone, A.; Sacco, A.; Pirri, C. F.; Stassi, S. Ultrasensitive piezoresistive and piezocapacitive cellulose-based ionic hydrogels for wearable multifunctional sensing. ACS. Appl. Electron. Mater. 2023, 5, 205-15.
29. Tran, V. T.; Mredha, M. T. I.; Pathak, S. K.; Yoon, H.; Cui, J.; Jeon, I. Conductive tough hydrogels with a staggered ion-coordinating structure for high self-recovery rate. ACS. Appl. Mater. Interfaces. 2019, 11, 24598-608.
30. Jian, Y.; Handschuh-Wang, S.; Zhang, J.; Lu, W.; Zhou, X.; Chen, T. Biomimetic anti-freezing polymeric hydrogels: keeping soft-wet materials active in cold environments. Mater. Horiz. 2021, 8, 351-69.
31. Mredha, M. T. I.; Le, H. H.; Cui, J.; Jeon, I. Double-hydrophobic-coating through quenching for hydrogels with strong resistance to both drying and swelling. Adv. Sci. 2020, 7, 1903145.
32. Lu, L.; Ding, W.; Liu, J.; Yang, B. Flexible PVDF based piezoelectric nanogenerators. Nano. Energy. 2020, 78, 105251.
33. Martins, P.; Lopes, A.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683-706.
34. Song, J.; Chen, C.; Zhu, S.; et al. Processing bulk natural wood into a high-performance structural material. Nature 2018, 554, 224-8.
35. Wang, S.; Lu, A.; Zhang, L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 2016, 53, 169-206.
36. Rama, V. A. V.; Das, T.; Mredha, M. T. I.; et al. All-glycerogel stretchable supercapacitor with stable performance in a wide temperature window from -20 to 80 °C. Chem. Eng. J. 2024, 496, 153856.
37. Shahroudkolaei M, Mredha MTI, Chuang KC, Jeon I. Hofmeister-effect-driven hybrid glycerogels for perfect wide-temperature shape fixity and shape recovery in soft robotics applications. Small 2024, 20, e2400567.
38. Mredha, M. T. I.; Rama, V. A. V.; Gupta, T.; Jeon, I. Water-triggered reconfigurable glycerogels for sustainable all-gel supercapacitors. Adv. Sci. 2025, 12, e2411847.
39. Mredha, M. T. I.; Le, H. H.; Tran, V. T.; Trtik, P.; Cui, J.; Jeon, I. Anisotropic tough multilayer hydrogels with programmable orientation. Mater. Horiz. 2019, 6, 1504-11.
40. Mredha, M. T. I.; Guo, Y. Z.; Nonoyama, T.; Nakajima, T.; Kurokawa, T.; Gong, J. P. A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures. Adv. Mater. 2018, 30, 1704937.
41. Cai, X.; Lei, T.; Sun, D.; Lin, L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC. Adv. 2017, 7, 15382-9.
42. Damjanovic, D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 1998, 61, 1267-324.
43. Gregorio, R. Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci. 2006, 100, 3272-9.
44. Fukada, E. History and recent progress in piezoelectric polymers. IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 2000, 47, 1277-90.
45. Rajala, S.; Siponkoski, T.; Sarlin, E.; et al. Cellulose nanofibril film as a piezoelectric sensor material. ACS. Appl. Mater. Interfaces. 2016, 8, 15607-14.
46. Choi, J.; Lee, K.; Lee, M.; et al. High β-phase poly(vinylidene fluoride) using a thermally decomposable molecular splint. Adv. Electron. Mater. 2023, 9, 2200279.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.