REFERENCES
1. Luderer, G.; Madeddu, S.; Merfort, L.; et al. Impact of declining renewable energy costs on electrification in low-emission scenarios. Nat. Energy. 2022, 7, 32-42.
2. Davis, S. J.; Lewis, N. S.; Shaner, M.; et al. Net-zero emissions energy systems. Science 2018, 360, eaas9793.
3. Luderer, G.; Vrontisi, Z.; Bertram, C.; et al. Residual fossil CO2 emissions in 1.5-2 °C pathways. Nat. Clim. Chang. 2018, 8, 626-33.
4. Wang, X. Piezoelectric nanogenerators - harvesting ambient mechanical energy at the nanometer scale. Nano. Energy. 2012, 1, 13-24.
5. Donelan, J. M.; Li, Q.; Naing, V.; Hoffer, J. A.; Weber, D. J.; Kuo, A. D. Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 2008, 319, 807-10.
6. Yamada, T.; Niizeki, N.; Toyoda, H. Piezoelectric and elastic properties of lithium niobate single crystals. Jpn. J. Appl. Phys. 1967, 6, 151.
7. Acosta, M.; Novak, N.; Rojas, V.; et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 2017, 4, 041305.
9. Yang, Z.; Zhou, S.; Zu, J.; Inman, D. High-performance piezoelectric energy harvesters and their applications. Joule 2018, 2, 642-97.
10. Panda, P. K. Review: environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 2009, 44, 5049-62.
11. Sezer, N.; Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano. Energy. 2021, 80, 105567.
12. Wang, P.; Hu, M.; Wang, H.; et al. The evolution of flexible electronics: from nature, beyond nature, and to nature. Adv. Sci. 2020, 7, 2001116.
13. Mredha, M. T. I.; Jeon, I. Biomimetic anisotropic hydrogels: advanced fabrication strategies, extraordinary functionalities, and broad applications. Prog. Mater. Sci. 2022, 124, 100870.
14. Mredha, M. T. I.; Lee, Y.; Rama, V. A. V.; Gupta, T.; Manimel, W. R. R.; Jeon, I. Tardigrade-inspired extremotolerant glycerogels. NPG. Asia. Mater. 2023, 15, 472.
15. Hao, X. P.; Xu, Z.; Li, C. Y.; Hong, W.; Zheng, Q.; Wu, Z. L. Kirigami-design-enabled hydrogel multimorphs with application as a multistate switch. Adv. Mater. 2020, 32, e2000781.
16. Mredha, M. T. I.; Pathak, S. K.; Tran, V. T.; Cui, J.; Jeon, I. Hydrogels with superior mechanical properties from the synergistic effect in hydrophobic-hydrophilic copolymers. Chem. Eng. J. 2019, 362, 325-38.
17. Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143-53.
18. Tran, V. T.; Mredha, M. T. I.; Lee, Y.; et al. Electrically, thermally, and mechanically anisotropic gels with a wide operational temperature range. Adv. Funct. Mater. 2022, 32, 2110177.
19. Jeon, I.; Cui, J.; Illeperuma, W. R.; Aizenberg, J.; Vlassak, J. J. Extremely stretchable and fast self-healing hydrogels. Adv. Mater. 2016, 28, 4678-83.
20. Mallick Z, Sarkar U, Mandal D, Roy RK. Synergetic H-bonding and C-T interaction-mediated self-assembled structure results in a room-temperature ferroelectric material exhibiting electric field-induced dipole switching and piezo- and pyroelectric energy conversion. Chem. Mater. 2023, 35, 3316-28.
21. Zhao, W.; Shi, Z.; Hu, S.; Yang, G.; Tian, H. Understanding piezoelectric characteristics of PHEMA-based hydrogel nanocomposites as soft self-powered electronics. Adv. Compos. Hybrid. Mater. 2018, 1, 320-31.
22. Fu, R.; Tu, L.; Zhou, Y.; et al. A tough and self-powered hydrogel for artificial skin. Chem. Mater. 2019, 31, 9850-60.
23. Hu, Z.; Li, J.; Wei, X.; et al. Enhancing strain-sensing properties of the conductive hydrogel by introducing PVDF-TrFE. ACS. Appl. Mater. Interfaces. 2022, 14, 45853-68.
24. Rani, G. M.; Wu, C.; Motora, K. G.; Umapathi, R.; Jose, C. R. M. Acoustic-electric conversion and triboelectric properties of nature-driven CF-CNT based triboelectric nanogenerator for mechanical and sound energy harvesting. Nano. Energy. 2023, 108, 108211.
25. Rani, G. M.; Wu, C.; Motora, K. G.; Umapathi, R. Waste-to-energy: utilization of recycled waste materials to fabricate triboelectric nanogenerator for mechanical energy harvesting. J. Clean. Prod. 2022, 363, 132532.
26. Rani, G. M.; Ghoreishian, S. M.; Umapathi, R.; Vivekananthan, V.; Huh, Y. S. A biocompatible triboelectric nanogenerator-based edible electronic skin for morse code transmitters and smart healthcare applications. Nano. Energy. 2024, 128, 109899.
27. Yu, S.; Xu, Y.; Cao, Z.; et al. Alterable robotic skin using material gene expression modulation. Adv. Funct. Mater. 2024, 2416984.
28. Mogli, G.; Chiappone, A.; Sacco, A.; Pirri, C. F.; Stassi, S. Ultrasensitive piezoresistive and piezocapacitive cellulose-based ionic hydrogels for wearable multifunctional sensing. ACS. Appl. Electron. Mater. 2023, 5, 205-15.
29. Tran, V. T.; Mredha, M. T. I.; Pathak, S. K.; Yoon, H.; Cui, J.; Jeon, I. Conductive tough hydrogels with a staggered ion-coordinating structure for high self-recovery rate. ACS. Appl. Mater. Interfaces. 2019, 11, 24598-608.
30. Jian, Y.; Handschuh-Wang, S.; Zhang, J.; Lu, W.; Zhou, X.; Chen, T. Biomimetic anti-freezing polymeric hydrogels: keeping soft-wet materials active in cold environments. Mater. Horiz. 2021, 8, 351-69.
31. Mredha, M. T. I.; Le, H. H.; Cui, J.; Jeon, I. Double-hydrophobic-coating through quenching for hydrogels with strong resistance to both drying and swelling. Adv. Sci. 2020, 7, 1903145.
32. Lu, L.; Ding, W.; Liu, J.; Yang, B. Flexible PVDF based piezoelectric nanogenerators. Nano. Energy. 2020, 78, 105251.
33. Martins, P.; Lopes, A.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683-706.
34. Song, J.; Chen, C.; Zhu, S.; et al. Processing bulk natural wood into a high-performance structural material. Nature 2018, 554, 224-8.
35. Wang, S.; Lu, A.; Zhang, L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 2016, 53, 169-206.
36. Rama, V. A. V.; Das, T.; Mredha, M. T. I.; et al. All-glycerogel stretchable supercapacitor with stable performance in a wide temperature window from -20 to 80 °C. Chem. Eng. J. 2024, 496, 153856.
37. Shahroudkolaei M, Mredha MTI, Chuang KC, Jeon I. Hofmeister-effect-driven hybrid glycerogels for perfect wide-temperature shape fixity and shape recovery in soft robotics applications. Small 2024, 20, e2400567.
38. Mredha, M. T. I.; Rama, V. A. V.; Gupta, T.; Jeon, I. Water-triggered reconfigurable glycerogels for sustainable all-gel supercapacitors. Adv. Sci. 2025, 12, e2411847.
39. Mredha, M. T. I.; Le, H. H.; Tran, V. T.; Trtik, P.; Cui, J.; Jeon, I. Anisotropic tough multilayer hydrogels with programmable orientation. Mater. Horiz. 2019, 6, 1504-11.
40. Mredha, M. T. I.; Guo, Y. Z.; Nonoyama, T.; Nakajima, T.; Kurokawa, T.; Gong, J. P. A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures. Adv. Mater. 2018, 30, 1704937.
41. Cai, X.; Lei, T.; Sun, D.; Lin, L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC. Adv. 2017, 7, 15382-9.
42. Damjanovic, D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 1998, 61, 1267-324.
43. Gregorio, R. Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci. 2006, 100, 3272-9.
44. Fukada, E. History and recent progress in piezoelectric polymers. IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 2000, 47, 1277-90.
45. Rajala, S.; Siponkoski, T.; Sarlin, E.; et al. Cellulose nanofibril film as a piezoelectric sensor material. ACS. Appl. Mater. Interfaces. 2016, 8, 15607-14.