1. Tian, X.; Zhao, X.; Su, Y. Q.; et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850-6.
2. Lin, L.; Zhou, W.; Gao, R.; et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80-3.
3. Zhang, X.; Luo, Z.; Yu, P.; et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat. Catal. 2018, 1, 460-8.
4. Yukesh, K. R.; Kavitha, S.; Preethi; et al. Techno-economic assessment of various hydrogen production methods - a review. Bioresour. Technol. 2021, 319, 124175.
5. Mahmood, J.; Li, F.; Jung, S. M.; et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441-6.
6. Staffell, I.; Scamman, D.; Velazquez, A. A.; et al. The role of hydrogen and fuel cells in the global energy system. Energy. Environ. Sci. 2019, 12, 463-91.
7. Morales-Guio, C. G.; Stern, L. A.; Hu, X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555-69.
8. Amano, F.; Tsushiro, K. Proton exchange membrane photoelectrochemical cell for water splitting under vapor feeding. Energy. Mater. 2024, 4, 400006.
9. Ma, Y.; Wang, L.; Zhao, W.; et al. Reactant enrichment in hollow void of Pt NPs@MnOx nanoreactors for boosting hydrogenation performance. Natl. Sci. Rev. 2023, 10, nwad201.
10. Xiao, X.; Yang, L.; Sun, W.; et al. Electrocatalytic water splitting: from harsh and mild conditions to natural seawater. Small 2022, 18, e2105830.
11. Zhang, X.; Guo, Y.; Wang, C. Multi-interface engineering of nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Energy. Mater. 2024. DOI: 10.20517/energymater.2023.115.
12. Rausch, B.; Symes, M. D.; Chisholm, G.; Cronin, L. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 2014, 345, 1326-30.
13. Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy. Rev. 2017, 67, 597-611.
14. Oh, Y.; Theerthagiri, J.; Aruna, K. M.; Min, A.; Moon, C. J.; Choi, M. Y. Electrokinetic-mechanism of water and furfural oxidation on pulsed laser-interlaced Cu2O and CoO on nickel foam. J. Energy. Chem. 2024, 91, 145-54.
15. Wang, T.; Tao, L.; Zhu, X.; et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 2022, 5, 66-73.
16. Liu, X.; Jiang, Y.; Huang, J.; et al. Bifunctional PdPt bimetallenes for formate oxidation-boosted water electrolysis. Carbon. Energy. 2023, 5, e367.
17. Ge, Z.; Ding, Y.; Wang, T.; et al. Interfacial engineering of holey platinum nanotubes for formic acid electrooxidation boosted water splitting. J. Energy. Chem. 2023, 77, 209-16.
18. Li, Y.; Wei, X.; Chen, L.; Shi, J. Electrocatalytic hydrogen production trilogy. Angew. Chem. Int. Ed. 2021, 60, 19550-71.
19. Song, Y.; Ji, K.; Duan, H.; Shao, M. Hydrogen production coupled with water and organic oxidation based on layered double hydroxides. Exploration 2021, 1, 20210050.
20. Lee, H.; Theerthagiri, J.; Aruna, K. M.; et al. Leveraging phosphate group in Pd/PdO decorated nickel phosphate microflowers via pulsed laser for robust hydrogen production in hydrazine-assisted electrolyzer. Int. J. Hydrogen. Energy. 2024, 57, 176-86.
21. Jeong, Y.; Naik, S. S.; Theerthagiri, J.; et al. Manifolding surface sites of compositional CoPd alloys via pulsed laser for hydrazine oxidation-assisted energy-saving electrolyzer: activity origin and mechanism discovery. Chem. Eng. J. 2023, 470, 144034.
22. Sun, H.; Kim, H.; Song, S.; Jung, W. Copper foam-derived electrodes as efficient electrocatalysts for conventional and hybrid water electrolysis. Mater. Rep. Energy. 2022, 2, 100092.
23. Yang, F.; Qiao, W.; Yu, L.; Wang, S.; Feng, L. Support engineering modulated Pt/hierarchical MoSe2@mesoporous hollow carbon spheres for efficient methanol-assisted water splitting. Chem. Eng. J. 2024, 483, 149055.
24. Ding, M.; Chen, Z.; Liu, C.; et al. Electrochemical CO2 reduction: progress and opportunity with alloying copper. Mater. Rep. Energy. 2023, 3, 100175.
25. Qiao, W.; Yu, L.; Chang, J.; Yang, F.; Feng, L. Efficient bi-functional catalysis of coupled MoSe2 nanosheet/Pt nanoparticles for methanol-assisted water splitting. Chin. J. Catal. 2023, 51, 113-23.
26. Muthumeenal, A.; Pethaiah, S. S.; Nagendran, A. Investigation of SPES as PEM for hydrogen production through electrochemical reforming of aqueous methanol. Renew. Energy. 2016, 91, 75-82.
27. Liu, C.; Feng, L. Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chin. J. Struct. Chem. 2023, 42, 100136.
28. Qiao, W.; Huang, X.; Feng, L. Advances of PtRu-based electrocatalysts for methanol oxidation. Chin. J. Struct. Chem. 2022, 41, 2207016-34.
29. Cui, C.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765-71.
30. Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew. Chem. Int. Ed. 2018, 57, 7568-79.
31. Xie, Y.; Cai, J.; Wu, Y.; et al. Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning. Adv. Mater. 2019, 31, e1807780.
32. Li, H. H.; Zhao, S.; Gong, M.; et al. Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation. Angew. Chem. Int. Ed. 2013, 52, 7472-6.
33. Kariuki, N. N.; Khudhayer, W. J.; Karabacak, T.; Myers, D. J. Glad Pt-Ni alloy nanorods for oxygen reduction reaction. ACS. Catal. 2013, 3, 3123-32.
34. Yang, F.; Ren, R.; Zhang, X.; et al. Tailoring the electronic structure of PdAgx alloy nanowires for high oxygen reduction reaction. Chin. J. Struct. Chem. 2023, 42, 100068.
35. Sun, B.; Jiang, Y.; Hong, Q.; et al. Pt-Te alloy nanowires towards formic acid electrooxidation reaction. J. Energy. Chem. 2023, 85, 481-9.
36. Theerthagiri, J.; Karuppasamy, K.; Lee, S. J.; et al. Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. Light. Sci. Appl. 2022, 11, 250.
37. Huang, Z.; Cheng, T.; Shah, A. H.; et al. Edge sites dominate the hydrogen evolution reaction on platinum nanocatalysts. Nat. Catal. 2024, 7, 678-88.
38. Zhu, Y.; Zhu, X.; Bu, L.; et al. Single-atom in-doped subnanometer Pt nanowires for simultaneous hydrogen generation and biomass upgrading. Adv. Funct. Mater. 2020, 30, 2004310.
39. Huang, W.; Wang, H.; Zhou, J.; et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 2015, 6, 10035.
40. Qi, Z.; Xiao, C.; Liu, C.; et al. Sub-4 nm PtZn Intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction. J. Am. Chem. Soc. 2017, 139, 4762-8.
41. Ren, F.; Wang, C.; Zhai, C.; et al. One-pot synthesis of a RGO-supported ultrafine ternary PtAuRu catalyst with high electrocatalytic activity towards methanol oxidation in alkaline medium. J. Mater. Chem. A. 2013, 1, 7255.
42. Saleem, F.; Ni, B.; Yong, Y.; Gu, L.; Wang, X. Ultra-small tetrametallic Pt-Pd-Rh-Ag nanoframes with tunable behavior for direct formic acid/methanol oxidation. Small 2016, 12, 5261-8.
43. Yan, X.; Yu, S.; Tang, Y.; Sun, D.; Xu, L.; Xue, C. Triangular AgAu@Pt core-shell nanoframes with a dendritic Pt shell and enhanced electrocatalytic performance toward the methanol oxidation reaction. Nanoscale 2018, 10, 2231-5.
44. Liu, Q.; Xu, Y.; Wang, A.; Feng, J. A single-step route for large-scale synthesis of core-shell palladium@platinum dendritic nanocrystals/reduced graphene oxide with enhanced electrocatalytic properties. J. Power. Sources. 2016, 302, 394-401.
45. Ren, G.; Liu, Y.; Wang, W.; et al. Facile synthesis of highly active three-dimensional urchin-like Pd@PtNi nanostructures for improved methanol and ethanol electrochemical oxidation. ACS. Appl. Nano. Mater. 2018, 1, 3226-35.
46. Lou, Y.; Li, C.; Gao, X.; et al. Porous Pt nanotubes with high methanol oxidation electrocatalytic activity based on original bamboo-shaped Te nanotubes. ACS. Appl. Mater. Interfaces. 2016, 8, 16147-53.
47. Zhang, Y.; Wang, S.; Si, F.; et al. Synergistic effects of p-d orbital hybridization and CeO2 surface engineering on PtBi nanoplates for methanol electro-oxidation. Sci. China. Mater. 2024, 67, 1975-84.
48. Hu, X.; Xiong, H.; Dou, J.; Jiang, Z. Strengthening the activity and CO tolerance with bi-component PtNi/NbN-C catalyst for methanol alkaline electrooxidation. Electrochim. Acta. 2024, 507, 145092.
49. Zhang, Z.; Luo, Z.; Chen, B.; et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712-7.
50. Yuan, M.; Wang, C.; Wang, Y.; Wang, Y.; Wang, X.; Du, Y. General fabrication of RuM (M = Ni and Co) nanoclusters for boosting hydrogen evolution reaction electrocatalysis. Nanoscale 2021, 13, 13042-7.
51. Hao, Y.; Wang, X.; Zheng, Y.; et al. Uniform Pt nanoparticles incorporated into reduced graphene oxides with MoO3 as advanced anode catalysts for methanol electro-oxidation. Electrochim. Acta. 2016, 198, 127-34.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.