REFERENCES
1. Tian, X.; Zhao, X.; Su, Y. Q.; et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850-6.
2. Lin, L.; Zhou, W.; Gao, R.; et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80-3.
3. Zhang, X.; Luo, Z.; Yu, P.; et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat. Catal. 2018, 1, 460-8.
4. Yukesh, K. R.; Kavitha, S.; Preethi; et al. Techno-economic assessment of various hydrogen production methods - a review. Bioresour. Technol. 2021, 319, 124175.
5. Mahmood, J.; Li, F.; Jung, S. M.; et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441-6.
6. Staffell, I.; Scamman, D.; Velazquez, A. A.; et al. The role of hydrogen and fuel cells in the global energy system. Energy. Environ. Sci. 2019, 12, 463-91.
7. Morales-Guio, C. G.; Stern, L. A.; Hu, X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555-69.
8. Amano, F.; Tsushiro, K. Proton exchange membrane photoelectrochemical cell for water splitting under vapor feeding. Energy. Mater. 2024, 4, 400006.
9. Ma, Y.; Wang, L.; Zhao, W.; et al. Reactant enrichment in hollow void of Pt NPs@MnOx nanoreactors for boosting hydrogenation performance. Natl. Sci. Rev. 2023, 10, nwad201.
10. Xiao, X.; Yang, L.; Sun, W.; et al. Electrocatalytic water splitting: from harsh and mild conditions to natural seawater. Small 2022, 18, e2105830.
11. Zhang, X.; Guo, Y.; Wang, C. Multi-interface engineering of nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Energy. Mater. 2024. DOI: 10.20517/energymater.2023.115.
12. Rausch, B.; Symes, M. D.; Chisholm, G.; Cronin, L. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 2014, 345, 1326-30.
13. Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy. Rev. 2017, 67, 597-611.
14. Oh, Y.; Theerthagiri, J.; Aruna, K. M.; Min, A.; Moon, C. J.; Choi, M. Y. Electrokinetic-mechanism of water and furfural oxidation on pulsed laser-interlaced Cu2O and CoO on nickel foam. J. Energy. Chem. 2024, 91, 145-54.
15. Wang, T.; Tao, L.; Zhu, X.; et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 2022, 5, 66-73.
16. Liu, X.; Jiang, Y.; Huang, J.; et al. Bifunctional PdPt bimetallenes for formate oxidation-boosted water electrolysis. Carbon. Energy. 2023, 5, e367.
17. Ge, Z.; Ding, Y.; Wang, T.; et al. Interfacial engineering of holey platinum nanotubes for formic acid electrooxidation boosted water splitting. J. Energy. Chem. 2023, 77, 209-16.
18. Li, Y.; Wei, X.; Chen, L.; Shi, J. Electrocatalytic hydrogen production trilogy. Angew. Chem. Int. Ed. 2021, 60, 19550-71.
19. Song, Y.; Ji, K.; Duan, H.; Shao, M. Hydrogen production coupled with water and organic oxidation based on layered double hydroxides. Exploration 2021, 1, 20210050.
20. Lee, H.; Theerthagiri, J.; Aruna, K. M.; et al. Leveraging phosphate group in Pd/PdO decorated nickel phosphate microflowers via pulsed laser for robust hydrogen production in hydrazine-assisted electrolyzer. Int. J. Hydrogen. Energy. 2024, 57, 176-86.
21. Jeong, Y.; Naik, S. S.; Theerthagiri, J.; et al. Manifolding surface sites of compositional CoPd alloys via pulsed laser for hydrazine oxidation-assisted energy-saving electrolyzer: activity origin and mechanism discovery. Chem. Eng. J. 2023, 470, 144034.
22. Sun, H.; Kim, H.; Song, S.; Jung, W. Copper foam-derived electrodes as efficient electrocatalysts for conventional and hybrid water electrolysis. Mater. Rep. Energy. 2022, 2, 100092.
23. Yang, F.; Qiao, W.; Yu, L.; Wang, S.; Feng, L. Support engineering modulated Pt/hierarchical MoSe2@mesoporous hollow carbon spheres for efficient methanol-assisted water splitting. Chem. Eng. J. 2024, 483, 149055.
24. Ding, M.; Chen, Z.; Liu, C.; et al. Electrochemical CO2 reduction: progress and opportunity with alloying copper. Mater. Rep. Energy. 2023, 3, 100175.
25. Qiao, W.; Yu, L.; Chang, J.; Yang, F.; Feng, L. Efficient bi-functional catalysis of coupled MoSe2 nanosheet/Pt nanoparticles for methanol-assisted water splitting. Chin. J. Catal. 2023, 51, 113-23.
26. Muthumeenal, A.; Pethaiah, S. S.; Nagendran, A. Investigation of SPES as PEM for hydrogen production through electrochemical reforming of aqueous methanol. Renew. Energy. 2016, 91, 75-82.
27. Liu, C.; Feng, L. Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chin. J. Struct. Chem. 2023, 42, 100136.
28. Qiao, W.; Huang, X.; Feng, L. Advances of PtRu-based electrocatalysts for methanol oxidation. Chin. J. Struct. Chem. 2022, 41, 2207016-34.
29. Cui, C.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765-71.
30. Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew. Chem. Int. Ed. 2018, 57, 7568-79.
31. Xie, Y.; Cai, J.; Wu, Y.; et al. Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning. Adv. Mater. 2019, 31, e1807780.
32. Li, H. H.; Zhao, S.; Gong, M.; et al. Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation. Angew. Chem. Int. Ed. 2013, 52, 7472-6.
33. Kariuki, N. N.; Khudhayer, W. J.; Karabacak, T.; Myers, D. J. Glad Pt-Ni alloy nanorods for oxygen reduction reaction. ACS. Catal. 2013, 3, 3123-32.
34. Yang, F.; Ren, R.; Zhang, X.; et al. Tailoring the electronic structure of PdAgx alloy nanowires for high oxygen reduction reaction. Chin. J. Struct. Chem. 2023, 42, 100068.
35. Sun, B.; Jiang, Y.; Hong, Q.; et al. Pt-Te alloy nanowires towards formic acid electrooxidation reaction. J. Energy. Chem. 2023, 85, 481-9.
36. Theerthagiri, J.; Karuppasamy, K.; Lee, S. J.; et al. Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. Light. Sci. Appl. 2022, 11, 250.
37. Huang, Z.; Cheng, T.; Shah, A. H.; et al. Edge sites dominate the hydrogen evolution reaction on platinum nanocatalysts. Nat. Catal. 2024, 7, 678-88.
38. Zhu, Y.; Zhu, X.; Bu, L.; et al. Single-atom in-doped subnanometer Pt nanowires for simultaneous hydrogen generation and biomass upgrading. Adv. Funct. Mater. 2020, 30, 2004310.
39. Huang, W.; Wang, H.; Zhou, J.; et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 2015, 6, 10035.
40. Qi, Z.; Xiao, C.; Liu, C.; et al. Sub-4 nm PtZn Intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction. J. Am. Chem. Soc. 2017, 139, 4762-8.
41. Ren, F.; Wang, C.; Zhai, C.; et al. One-pot synthesis of a RGO-supported ultrafine ternary PtAuRu catalyst with high electrocatalytic activity towards methanol oxidation in alkaline medium. J. Mater. Chem. A. 2013, 1, 7255.
42. Saleem, F.; Ni, B.; Yong, Y.; Gu, L.; Wang, X. Ultra-small tetrametallic Pt-Pd-Rh-Ag nanoframes with tunable behavior for direct formic acid/methanol oxidation. Small 2016, 12, 5261-8.
43. Yan, X.; Yu, S.; Tang, Y.; Sun, D.; Xu, L.; Xue, C. Triangular AgAu@Pt core-shell nanoframes with a dendritic Pt shell and enhanced electrocatalytic performance toward the methanol oxidation reaction. Nanoscale 2018, 10, 2231-5.
44. Liu, Q.; Xu, Y.; Wang, A.; Feng, J. A single-step route for large-scale synthesis of core-shell palladium@platinum dendritic nanocrystals/reduced graphene oxide with enhanced electrocatalytic properties. J. Power. Sources. 2016, 302, 394-401.
45. Ren, G.; Liu, Y.; Wang, W.; et al. Facile synthesis of highly active three-dimensional urchin-like Pd@PtNi nanostructures for improved methanol and ethanol electrochemical oxidation. ACS. Appl. Nano. Mater. 2018, 1, 3226-35.
46. Lou, Y.; Li, C.; Gao, X.; et al. Porous Pt nanotubes with high methanol oxidation electrocatalytic activity based on original bamboo-shaped Te nanotubes. ACS. Appl. Mater. Interfaces. 2016, 8, 16147-53.
47. Zhang, Y.; Wang, S.; Si, F.; et al. Synergistic effects of p-d orbital hybridization and CeO2 surface engineering on PtBi nanoplates for methanol electro-oxidation. Sci. China. Mater. 2024, 67, 1975-84.
48. Hu, X.; Xiong, H.; Dou, J.; Jiang, Z. Strengthening the activity and CO tolerance with bi-component PtNi/NbN-C catalyst for methanol alkaline electrooxidation. Electrochim. Acta. 2024, 507, 145092.
49. Zhang, Z.; Luo, Z.; Chen, B.; et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712-7.
50. Yuan, M.; Wang, C.; Wang, Y.; Wang, Y.; Wang, X.; Du, Y. General fabrication of RuM (M = Ni and Co) nanoclusters for boosting hydrogen evolution reaction electrocatalysis. Nanoscale 2021, 13, 13042-7.