1. Ta XMC, Daiyan R, Nguyen TKA, Amal R, Tran-Phu T, Tricoli A. Alternatives to water photooxidation for photoelectrochemical solar energy conversion and green H2 production. Adv Energy Mater 2022;12:2201358.
2. Yang Y, Li P, Zheng X, et al. Anion-exchange membrane water electrolyzers and fuel cells. Chem Soc Rev 2022;51:9620-93.
3. Shi X, Jeong H, Oh SJ, et al. Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling. Nat Commun 2016;7:11943.
4. Takata T, Jiang J, Sakata Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020;581:411-4.
5. Guo Q, Zhou C, Ma Z, Yang X. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater 2019;31:e1901997.
6. Guo Y, Zhang R, Zhang S, et al. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries. Energy Environ Sci 2021;14:3938-44.
7. Wu J, Yang X, Zhang J, et al. Surface engineering of Ni2P/CoP nanosheet heterojunctions by the formation of F-doped carbon layers for boosting urea-rich water electrolysis. J Power Sources 2022;548:232065.
8. Sun C, Shao Z, Hu Y, Peng Y, Xie Q. Photoelectrocatalysis synthesis of ammonia based on a Ni-doped MoS2/Si nanowires photocathode and porous water with high N2 solubility. ACS Appl Mater Interfaces 2023;15:23085-92.
9. Zhang J, Yu L, Chen Y, Lu XF, Gao S, Lou XWD. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction. Adv Mater 2020;32:e1906432.
10. Xu H, Liao Y, Gao Z, Qing Y, Wu Y, Xia L. A branch-like Mo-doped Ni3S2 nanoforest as a high-efficiency and durable catalyst for overall urea electrolysis. J Mater Chem A 2021;9:3418-26.
11. Tong W, Huang B, Wang P, Shao Q, Huang X. Exposed facet-controlled N2 electroreduction on distinct Pt3Fe nanostructures of nanocubes, nanorods and nanowires. Natl Sci Rev 2021;8:nwaa088.
12. Zheng J, Sun L, Jiao C, et al. Hydrothermally synthesized Ti/Zr bimetallic MOFs derived N self-doped TiO2/ZrO2 composite catalysts with enhanced photocatalytic degradation of methylene blue. Colloid Surface A 2021;623:126629.
13. Zhang Q, Sun M, Yao M, et al. Interfacial engineering of an FeOOH@Co3O4 heterojunction for efficient overall water splitting and electrocatalytic urea oxidation. J Colloid Interface Sci 2022;623:617-26.
14. Qian Z, Zhang R, Xiao Y, et al. Trace to the source: self-tuning of MOF photocatalysts. Adv Energy Mater 2023;13:2300086.
15. Chen L, Song XL, Ren JT, Yuan ZY. Precisely modifying Co2P/black TiO2 S-scheme heterojunction by in situ formed P and C dopants for enhanced photocatalytic H2 production. Appl Catal B Environ 2022;315:121546.
16. Wang L, Tang G, Liu S, et al. Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution. Chem Eng J 2022;428:131338.
17. Li J, Du X, Zhang X, Wang Z. Fe7Se8@Fe2O3 heterostructure nanosheets as bifunctional electrocatalyst for urea electrolysis. Int J Hydrog Energy 2022;47:35203-14.
18. Kupfer B, Majhi K, Keller DA, et al. Thin film Co3O4/TiO2 heterojunction solar cells. Adv Energy Mater 2015;5:1401007.
19. Zhou C, Li J, Wang J, et al. Efficient H2 production and TN removal for urine disposal using a novel photoelectrocatalytic system of Co3O4/BiVO4 - MoNiCuOx/Cu. Appl Catal B Environ 2023;324:122229.
20. Park J, Lee TH, Kim C, et al. Hydrothermally obtained type-II heterojunction nanostructures of In2S3/TiO2 for remarkably enhanced photoelectrochemical water splitting. Appl Catal B Environ 2021;295:120276.
21. Fan W, Chen C, Bai H, Luo B, Shen H, Shi W. Photosensitive polymer and semiconductors bridged by Au plasmon for photoelectrochemical water splitting. Appl Catal B Environ 2016;195:9-15.
22. Tao Y, Ma Z, Wang W, et al. Nickel phosphide clusters sensitized TiO2 nanotube arrays as highly efficient photoanode for photoelectrocatalytic urea oxidation. Adv Funct Mater 2023;33:2211169.
23. Cui W, Bai H, Shang J, et al. Organic-inorganic hybrid-photoanode built from NiFe-MOF and TiO2 for efficient PEC water splitting. Electrochim Acta 2020;349:136383.
24. Tang P, Han L, Hegner FS, et al. Boosting photoelectrochemical water oxidation of hematite in acidic electrolytes by surface state modification. Adv Energy Mater 2019;9:1901836.
25. Yang X, Kang L, Wei Z, et al. A self-sacrificial templated route to fabricate CuFe Prussian blue analogue/Cu(OH)2 nanoarray as an efficient pre-catalyst for ultrastable bifunctional electro-oxidation. Chem Eng J 2021;422:130139.
26. Hegner FS, Herraiz-Cardona I, Cardenas-Morcoso D, López N, Galán-Mascarós JR, Gimenez S. Cobalt hexacyanoferrate on BiVO4 photoanodes for robust water splitting. ACS Appl Mater Interfaces 2017;9:37671-81.
27. Moss B, Hegner FS, Corby S, et al. Unraveling charge transfer in CoFe Prussian blue modified BiVO4 photoanodes. ACS Energy Lett 2019;4:337-42.
28. Hegner FS, Cardenas-Morcoso D, Giménez S, López N, Galan-Mascaros JR. Level alignment as descriptor for semiconductor/catalyst systems in water splitting: the case of hematite/cobalt hexacyanoferrate photoanodes. ChemSusChem 2017;10:4552-60.
29. Feng L, Li N, Tang S, Guo Y, Zheng J, Li X. Photoelectrochemical performance of titanium dioxide/Prussian blue analogue synthesized by impregnation conversion method as photoanode. Inorg Chem Commun 2021;125:108349.
30. Pal D, Maity D, Sarkar A, De D, Raj A, Khan GG. Multifunctional ultrathin amorphous CoFe-Prussian blue analogue catalysts for efficiently boosting the oxygen evolution activity of antimony-doped TiO2 nanorods photoanode. ACS Appl Energy Mater 2022;5:15000-9.
31. Khan AZ, Kandiel T, Abdel-Azeim S, Jahangir TN, Alhooshani K. Phosphate ions interfacial drift layer to improve the performance of CoFe-Prussian blue hematite photoanode toward water splitting. Appl Catal B Environ 2022;304:121014.
32. Usman E, Barzgar Vishlaghi M, Sadigh Akbari S, Karadaş F, Kaya S. Hybrid CuFe-CoFe Prussian blue catalysts on BiVO4 for enhanced charge separation and injection for photoelectrochemical water oxidation. ACS Appl Energy Mater 2022;5:15434-41.
33. Shaddad MN, Arunachalam P, Labis J, Hezam M, Al-Mayouf AM. Fabrication of robust nanostructured (Zr)BiVO4/nickel hexacyanoferrate core/shell photoanodes for solar water splitting. Appl Catal B Environ 2019;244:863-70.
34. Bai S, Jia S, Zhao Y, et al. NiFePB-modified ZnO/BiVO4 photoanode for PEC water oxidation. Dalton Trans 2023;52:5760-70.
35. Lee BR, Jang HW. β-In2S3 as water splitting photoanodes: promise and challenges. Electron Mater Lett 2021;17:119-35.
36. Wang X, Xie J, Li CM. Architecting smart “umbrella” Bi2S3/rGO-modified TiO2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light. J Mater Chem A 2015;3:1235-42.
37. Zhu C, Yao H, Le S, et al. S-scheme photocatalysis induced by ultrathin TiO2(B) nanosheets-anchored hierarchical In2S3 spheres for boosted photocatalytic activity. Compos Part B Eng 2022;242:110082.
38. Nawaz R, Kait CF, Chia HY, et al. Manipulation of the Ti3+/Ti4+ ratio in colored titanium dioxide and its role in photocatalytic degradation of environmental pollutants. Surf Interfaces 2022;32:102146.
39. Li J, Zhang M, Guan Z, Li Q, He C, Yang J. Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Appl Catal B Environ 2017;206:300-7.
40. Pu YC, Ling Y, Chang KD, et al. Surface passivation of TiO2 nanowires using a facile precursor-treatment approach for photoelectrochemical water oxidation. J Phys Chem C 2014;118:15086-94.
41. Wu F, Xie J, You Y, et al. Cobalt metal-organic framework ultrathin cocatalyst overlayer for improved photoelectrochemical activity of Ti-doped hematite. ACS Appl Energy Mater 2020;3:4867-76.
42. Ren J, Yang P, Wang L, et al. In situ transition of a nickel metal-organic framework on TiO2 photoanode towards urea photoelectrolysis. Catalysts 2023;13:727.
43. Sharma MD, Basu M. Nanosheets of In2S3/S-C3N4-dots for solar water-splitting in saline water. Langmuir 2022;38:12981-90.
44. Wu L, Yu L, Zhang F, et al. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv Funct Mater 2021;31:2006484.
45. Xie J, Qu H, Lei F, et al. Partially amorphous nickel-iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis. J Mater Chem A 2018;6:16121-9.
46. Grosvenor AP, Biesinger MC, Smart RS, Mcintyre NS. New interpretations of XPS spectra of nickel metal and oxides. Surf Sci 2006;600:1771-9.
47. Su X, Wang Y, Zhou J, Gu S, Li J, Zhang S. Operando spectroscopic identification of active sites in NiFe Prussian blue analogues as electrocatalysts: activation of oxygen atoms for oxygen evolution reaction. J Am Chem Soc 2018;140:11286-92.
48. Chen R, Zhang D, Wang Z, et al. Linking the photoinduced surface potential difference to interfacial charge transfer in photoelectrocatalytic water oxidation. J Am Chem Soc 2023;145:4667-74.
49. Wang X, Li H, Zhang J, Liu X, Zhang X. Wedged ß- In2S3 sensitized TiO2 films for enhanced photoelectrochemical hydrogen generation. J Alloys Compd 2020;831:154798.
50. Liqiang J, Yichun Q, Baiqi W, et al. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energy Mater Sol Cells 2006;90:1773-87.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.