REFERENCES
1. Ta XMC, Daiyan R, Nguyen TKA, Amal R, Tran-Phu T, Tricoli A. Alternatives to water photooxidation for photoelectrochemical solar energy conversion and green H2 production. Adv Energy Mater 2022;12:2201358.
2. Yang Y, Li P, Zheng X, et al. Anion-exchange membrane water electrolyzers and fuel cells. Chem Soc Rev 2022;51:9620-93.
3. Shi X, Jeong H, Oh SJ, et al. Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling. Nat Commun 2016;7:11943.
4. Takata T, Jiang J, Sakata Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020;581:411-4.
5. Guo Q, Zhou C, Ma Z, Yang X. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater 2019;31:e1901997.
6. Guo Y, Zhang R, Zhang S, et al. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries. Energy Environ Sci 2021;14:3938-44.
7. Wu J, Yang X, Zhang J, et al. Surface engineering of Ni2P/CoP nanosheet heterojunctions by the formation of F-doped carbon layers for boosting urea-rich water electrolysis. J Power Sources 2022;548:232065.
8. Sun C, Shao Z, Hu Y, Peng Y, Xie Q. Photoelectrocatalysis synthesis of ammonia based on a Ni-doped MoS2/Si nanowires photocathode and porous water with high N2 solubility. ACS Appl Mater Interfaces 2023;15:23085-92.
9. Zhang J, Yu L, Chen Y, Lu XF, Gao S, Lou XWD. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction. Adv Mater 2020;32:e1906432.
10. Xu H, Liao Y, Gao Z, Qing Y, Wu Y, Xia L. A branch-like Mo-doped Ni3S2 nanoforest as a high-efficiency and durable catalyst for overall urea electrolysis. J Mater Chem A 2021;9:3418-26.
11. Tong W, Huang B, Wang P, Shao Q, Huang X. Exposed facet-controlled N2 electroreduction on distinct Pt3Fe nanostructures of nanocubes, nanorods and nanowires. Natl Sci Rev 2021;8:nwaa088.
12. Zheng J, Sun L, Jiao C, et al. Hydrothermally synthesized Ti/Zr bimetallic MOFs derived N self-doped TiO2/ZrO2 composite catalysts with enhanced photocatalytic degradation of methylene blue. Colloid Surface A 2021;623:126629.
13. Zhang Q, Sun M, Yao M, et al. Interfacial engineering of an FeOOH@Co3O4 heterojunction for efficient overall water splitting and electrocatalytic urea oxidation. J Colloid Interface Sci 2022;623:617-26.
14. Qian Z, Zhang R, Xiao Y, et al. Trace to the source: self-tuning of MOF photocatalysts. Adv Energy Mater 2023;13:2300086.
15. Chen L, Song XL, Ren JT, Yuan ZY. Precisely modifying Co2P/black TiO2 S-scheme heterojunction by in situ formed P and C dopants for enhanced photocatalytic H2 production. Appl Catal B Environ 2022;315:121546.
16. Wang L, Tang G, Liu S, et al. Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution. Chem Eng J 2022;428:131338.
17. Li J, Du X, Zhang X, Wang Z. Fe7Se8@Fe2O3 heterostructure nanosheets as bifunctional electrocatalyst for urea electrolysis. Int J Hydrog Energy 2022;47:35203-14.
18. Kupfer B, Majhi K, Keller DA, et al. Thin film Co3O4/TiO2 heterojunction solar cells. Adv Energy Mater 2015;5:1401007.
19. Zhou C, Li J, Wang J, et al. Efficient H2 production and TN removal for urine disposal using a novel photoelectrocatalytic system of Co3O4/BiVO4 - MoNiCuOx/Cu. Appl Catal B Environ 2023;324:122229.
20. Park J, Lee TH, Kim C, et al. Hydrothermally obtained type-II heterojunction nanostructures of In2S3/TiO2 for remarkably enhanced photoelectrochemical water splitting. Appl Catal B Environ 2021;295:120276.
21. Fan W, Chen C, Bai H, Luo B, Shen H, Shi W. Photosensitive polymer and semiconductors bridged by Au plasmon for photoelectrochemical water splitting. Appl Catal B Environ 2016;195:9-15.
22. Tao Y, Ma Z, Wang W, et al. Nickel phosphide clusters sensitized TiO2 nanotube arrays as highly efficient photoanode for photoelectrocatalytic urea oxidation. Adv Funct Mater 2023;33:2211169.
23. Cui W, Bai H, Shang J, et al. Organic-inorganic hybrid-photoanode built from NiFe-MOF and TiO2 for efficient PEC water splitting. Electrochim Acta 2020;349:136383.
24. Tang P, Han L, Hegner FS, et al. Boosting photoelectrochemical water oxidation of hematite in acidic electrolytes by surface state modification. Adv Energy Mater 2019;9:1901836.
25. Yang X, Kang L, Wei Z, et al. A self-sacrificial templated route to fabricate CuFe Prussian blue analogue/Cu(OH)2 nanoarray as an efficient pre-catalyst for ultrastable bifunctional electro-oxidation. Chem Eng J 2021;422:130139.
26. Hegner FS, Herraiz-Cardona I, Cardenas-Morcoso D, López N, Galán-Mascarós JR, Gimenez S. Cobalt hexacyanoferrate on BiVO4 photoanodes for robust water splitting. ACS Appl Mater Interfaces 2017;9:37671-81.
27. Moss B, Hegner FS, Corby S, et al. Unraveling charge transfer in CoFe Prussian blue modified BiVO4 photoanodes. ACS Energy Lett 2019;4:337-42.
28. Hegner FS, Cardenas-Morcoso D, Giménez S, López N, Galan-Mascaros JR. Level alignment as descriptor for semiconductor/catalyst systems in water splitting: the case of hematite/cobalt hexacyanoferrate photoanodes. ChemSusChem 2017;10:4552-60.
29. Feng L, Li N, Tang S, Guo Y, Zheng J, Li X. Photoelectrochemical performance of titanium dioxide/Prussian blue analogue synthesized by impregnation conversion method as photoanode. Inorg Chem Commun 2021;125:108349.
30. Pal D, Maity D, Sarkar A, De D, Raj A, Khan GG. Multifunctional ultrathin amorphous CoFe-Prussian blue analogue catalysts for efficiently boosting the oxygen evolution activity of antimony-doped TiO2 nanorods photoanode. ACS Appl Energy Mater 2022;5:15000-9.
31. Khan AZ, Kandiel T, Abdel-Azeim S, Jahangir TN, Alhooshani K. Phosphate ions interfacial drift layer to improve the performance of CoFe-Prussian blue hematite photoanode toward water splitting. Appl Catal B Environ 2022;304:121014.
32. Usman E, Barzgar Vishlaghi M, Sadigh Akbari S, Karadaş F, Kaya S. Hybrid CuFe-CoFe Prussian blue catalysts on BiVO4 for enhanced charge separation and injection for photoelectrochemical water oxidation. ACS Appl Energy Mater 2022;5:15434-41.
33. Shaddad MN, Arunachalam P, Labis J, Hezam M, Al-Mayouf AM. Fabrication of robust nanostructured (Zr)BiVO4/nickel hexacyanoferrate core/shell photoanodes for solar water splitting. Appl Catal B Environ 2019;244:863-70.
34. Bai S, Jia S, Zhao Y, et al. NiFePB-modified ZnO/BiVO4 photoanode for PEC water oxidation. Dalton Trans 2023;52:5760-70.
35. Lee BR, Jang HW. β-In2S3 as water splitting photoanodes: promise and challenges. Electron Mater Lett 2021;17:119-35.
36. Wang X, Xie J, Li CM. Architecting smart “umbrella” Bi2S3/rGO-modified TiO2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light. J Mater Chem A 2015;3:1235-42.
37. Zhu C, Yao H, Le S, et al. S-scheme photocatalysis induced by ultrathin TiO2(B) nanosheets-anchored hierarchical In2S3 spheres for boosted photocatalytic activity. Compos Part B Eng 2022;242:110082.
38. Nawaz R, Kait CF, Chia HY, et al. Manipulation of the Ti3+/Ti4+ ratio in colored titanium dioxide and its role in photocatalytic degradation of environmental pollutants. Surf Interfaces 2022;32:102146.
39. Li J, Zhang M, Guan Z, Li Q, He C, Yang J. Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Appl Catal B Environ 2017;206:300-7.
40. Pu YC, Ling Y, Chang KD, et al. Surface passivation of TiO2 nanowires using a facile precursor-treatment approach for photoelectrochemical water oxidation. J Phys Chem C 2014;118:15086-94.
41. Wu F, Xie J, You Y, et al. Cobalt metal-organic framework ultrathin cocatalyst overlayer for improved photoelectrochemical activity of Ti-doped hematite. ACS Appl Energy Mater 2020;3:4867-76.
42. Ren J, Yang P, Wang L, et al. In situ transition of a nickel metal-organic framework on TiO2 photoanode towards urea photoelectrolysis. Catalysts 2023;13:727.
43. Sharma MD, Basu M. Nanosheets of In2S3/S-C3N4-dots for solar water-splitting in saline water. Langmuir 2022;38:12981-90.
44. Wu L, Yu L, Zhang F, et al. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv Funct Mater 2021;31:2006484.
45. Xie J, Qu H, Lei F, et al. Partially amorphous nickel-iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis. J Mater Chem A 2018;6:16121-9.
46. Grosvenor AP, Biesinger MC, Smart RS, Mcintyre NS. New interpretations of XPS spectra of nickel metal and oxides. Surf Sci 2006;600:1771-9.
47. Su X, Wang Y, Zhou J, Gu S, Li J, Zhang S. Operando spectroscopic identification of active sites in NiFe Prussian blue analogues as electrocatalysts: activation of oxygen atoms for oxygen evolution reaction. J Am Chem Soc 2018;140:11286-92.
48. Chen R, Zhang D, Wang Z, et al. Linking the photoinduced surface potential difference to interfacial charge transfer in photoelectrocatalytic water oxidation. J Am Chem Soc 2023;145:4667-74.
49. Wang X, Li H, Zhang J, Liu X, Zhang X. Wedged ß- In2S3 sensitized TiO2 films for enhanced photoelectrochemical hydrogen generation. J Alloys Compd 2020;831:154798.