REFERENCES
1. Intergovernmental Panel on Climate Change. Summary for Policymakers. In Climate Change 2022: Mitigation of Climate Change: Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2023; pp 3-48.
2. Mannion, P.; Parry, E.; Scott, J.; Patel, M.; Ringvold, E. Carbon removals: How to scale a new gigaton industry. McKinsey & Company, New York, NY, 2023. https://www.mckinsey.com/capabilities/sustainability/our-insights/carbon-removals-how-to-scale-a-new-gigaton-industry (accessed 2025-08-06).
3. Dowell, N.; Reiner, D. M.; Haszeldine, R. S. Comparing approaches for carbon dioxide removal. Joule 2022, 6, 2233-9.
5. Deprez, A.; Leadley, P.; Dooley, K.; et al. Sustainability limits needed for CO2 removal. Science 2024, 383, 484-6.
6. Mühlbauer, A.; Keiner, D.; Gerhards, C.; Caldera, U.; Sterner, M.; Breyer, C. Assessment of technologies and economics for carbon dioxide removal from a portfolio perspective. Int. J. Greenh. Gas. Control. 2025, 141, 104297.
8. Kojima, T.; Nagamine, A.; Ueno, N.; Uemiya, S. Absorption and fixation of carbon dioxide by rock weathering. Energy. Convers. Manag. 1997, 38, S461-6.
9. Strefler, J.; Amann, T.; Bauer, N.; Kriegler, E.; Hartmann, J. Potential and costs of carbon dioxide removal by enhanced weathering of rocks. Environ. Res. Lett. 2018, 13, 034010.
10. Beerling, D. J.; Epihov, D. Z.; Kantola, I. B.; et al. Enhanced weathering in the US Corn Belt delivers carbon removal with agronomic benefits. Proc. Natl. Acad. Sci. U. S. A. 2024, 121, e2319436121.
11. Haque, F.; Santos, R. M.; Chiang, Y. W. Urban Farming with enhanced rock weathering as a prospective climate stabilization wedge. Environ. Sci. Technol. 2021, 55, 13575-8.
12. Meysman, F. J.; Montserrat, F. Negative CO2 emissions via enhanced silicate weathering in coastal environments. Biol. Lett. 2017, 13, 20160905.
13. Foteinis, S.; Campbell, J. S.; Renforth, P. Life cycle assessment of coastal enhanced weathering for carbon dioxide removal from air. Environ. Sci. Technol. 2023, 57, 6169-78.
14. Goll, D. S.; Ciais, P.; Amann, T.; et al. Potential CO2 removal from enhanced weathering by ecosystem responses to powdered rock. Nat. Geosci. 2021, 14, 545-9.
15. Renforth, P. The negative emission potential of alkaline materials. Nat. Commun. 2019, 10, 1401.
16. Campbell, J. S.; Foteinis, S.; Furey, V.; et al. Geochemical negative emissions technologies: part I. review. Front. Clim. 2022, 4, 879133.
17. Maesano, C. N.; Campbell, J. S.; Foteinis, S.; et al. Geochemical negative emissions technologies: part II. roadmap. Front. Clim. 2022, 4, 945332.
18. Larkin, C. S.; Andrews, M. G.; Pearce, C. R.; et al. Quantification of CO2 removal in a large-scale enhanced weathering field trial on an oil palm plantation in Sabah, Malaysia. Front. Clim. 2022, 4, 959229.
19. Linke, T.; Oelkers, E.; Möckel, S.; Gislason, S. Direct evidence of CO2 drawdown through enhanced weathering in soils. Geochem. Persp. Let. 2024, 30, 7-12.
20. Calabrese, S.; Wild, B.; Bertagni, M. B.; et al. Nano- to global-scale uncertainties in terrestrial enhanced weathering. Environ. Sci. Technol. 2022, 56, 15261-72.
21. Abdalqadir, M.; Hughes, D.; Rezaei Gomari, S.; Rafiq, U. A state of the art of review on factors affecting the enhanced weathering in agricultural soil: strategies for carbon sequestration and climate mitigation. Environ. Sci. Pollut. Res. Int. 2024, 31, 19047-70.
22. Clarkson, M. O.; Larkin, C. S.; Swoboda, P.; et al. A review of measurement for quantification of carbon dioxide removal by enhanced weathering in soil. Front. Clim. 2024, 6, 1345224.
23. Spence, E.; Cox, E.; Pidgeon, N. Exploring cross-national public support for the use of enhanced weathering as a land-based carbon dioxide removal strategy. Clim. Change. 2021, 165, 23.
24. Eufrasio, R. M.; Kantzas, E. P.; Edwards, N. R.; et al. Environmental and health impacts of atmospheric CO2 removal by enhanced rock weathering depend on nations’ energy mix. Commun. Earth. Environ. 2022, 3, 436.
25. Lefebvre, D.; Goglio, P.; Williams, A.; et al. Assessing the potential of soil carbonation and enhanced weathering through life cycle assessment: a case study for Sao Paulo State, Brazil. J. Clean. Prod. 2019, 233, 468-81.
26. Jerden, J.; Mejbel, M.; Filho, A. N. Z.; Carroll, M.; Campe, J. The impact of geochemical and life-cycle variables on carbon dioxide removal by enhanced rock weathering: development and application of the Stella ERW model. Appl. Geochem. 2024, 167, 106.
27. Oppon, E.; Richter, J. S.; Koh, S. L.; Nabayiga, H. Macro-level economic and environmental sustainability of negative emission technologies; case study of crushed silicate production for enhanced weathering. Ecol. Econ. 2023, 204, 107636.
28. Oppon, E.; Koh, S. L.; Eufrasio, R. Sustainability performance of enhanced weathering across countries: a triple bottom line approach. Energy. Econ. 2024, 136, 107722.
29. Aviso, K. B.; Migo-Sumagang, M. V.; Ramos, C. A.; Tan, R. R. Economic ripple effects of large-scale basalt enhanced weathering in the Philippines. Chem. Eng. Trans. 2024, 114, 547-52.
30. Leontief, W. Environmental repercussions and the economic structure: an input-output approach. Rev. Econ. Stat. 1970, 52, 262-71.
31. Hashim, Z.; Subramaniam, V.; Harun, M. H.; Kamarudin, N. Carbon footprint of oil palm planted on peat in Malaysia. Int. J. Life. Cycle. Assess. 2018, 23, 1201-17.
32. Hosseini, S. E.; Abdul Wahid, M. Pollutant in palm oil production process. J. Air. Waste. Manag. Assoc. 2015, 65, 773-81.
33. Rajakal, J. P.; Ng, F. Y.; Zulkifli, A.; et al. Analysis of current state, gaps, and opportunities for technologies in the Malaysian oil palm estates and palm oil mills towards net-zero emissions. Heliyon 2024, 10, e30768.
34. Cox, E.; Lim, R.; Spence, E.; Payne, M.; Beerling, D.; Pidgeon, N. Question-Led Innovation: public priorities for enhanced weathering research in Malaysia. Environ. Sci. Policy. 2025, 163, 103977.
35. Leontief, W. W. Quantitative input and output relations in the economic systems of the United States. Rev. Econ. Stat. 1936, 18, 105-25.
36. Miller, R. E.; Blair, P. D. Input-output analysis: foundations and extensions, 4th ed.; Cambridge University Press, 2019.
37. Dong, Q.; Zhong, C.; Geng, Y.; Dong, F.; Chen, W.; Zhang, Y. A bibliometric review of carbon footprint research. Carbon. Footprints. 2024, 3, 24.
38. Malaysia: Input-Output Economic Indicators. Asian Development Bank. https://data.adb.org/dataset/malaysia-input-output-economic-indicators (accessed 2026-01-5).
39. SCP Hotspot Analysis. https://scp-hat.org/ (accessed 2026-01-5).
40. Malaysia Page. fertiMetrics. https://fertimetrics.com/markets/malaysia/ (accessed 2026-01-5).
41. Ye, K. Q. Orthogonal column latin hypercubes and their application in computer experiments. J. Am. Stat. Assoc. 1998, 93, 1430-9.
42. Carbon intensity of electricity generation, 2024. Our World in Data. https://ourworldindata.org/grapher/carbon-intensity-electricity (accessed 2026-01-5).
43. Fernandez, M. I.; Go, Y. I.; Früh, W.; Wong, D. M. Projection of electricity generation profiles and carbon emissions towards 2050: a Malaysia Context. Energy. Sustain. Dev. 2025, 85, 101681.





